Distributed Fault-Tolerant
Real-Time Systems:

The Mars Approach

ost computer systems for real-time process control must meet high

standards of reliability, availability, and safety. In many of these

real-time applications, the costs of a catastrophic system failure
can exceed the initial investment in the computer and the controlled object.
To prevent such failures, system design must guarantee performance as
specified in the domains of both value and time during all anticipated
operational situations. The computer system must also be designed to
tolerate faults caused by environmental disturbances or a physical degrada-
tion of the hardware.

Distributed computer-system architectures have gained general accept-
ance in the area of real-time process control. These architectures offer a
significant potential for fault tolerance and functional degradation as well
as for testability and extensibility. However, many of the distributed
computer-system architectures presently on the market! or proposed by the
research community as academic prototypes (the V-Kernel,2 Accent,? or
Chorus*) do not support some key points that are essential to reliable con-
trol of real-time applications. These points are

* limited time validity of real-time data,

* predictable performance under peak load,
® fault tolerance, and

* maintainability and extensibility.

Consequently, we developed the Maintainable Real-Time System, a
fault-tolerant distributed system for process control. The Mars project
started in 1980 at the Technische Universitat Berlin. The first prototype ap-
peared in 1984 and demonstrated the fundamental concepts of Mars. The
second academic prototype developed at the Technische Universitat Wien
in Vienna has been functional since the beginning of 1988. Its main feature
is predictable performance under a specified peak load. Its industrial ap-
plications include rolling mills and railway-control systems in which the
controlled system imposes hard deadlines.

This article presents the Mars approach to real-time process control, its
architectural design and implementation, and one of its applications. But
first, let’s explore the characteristics of distributed real-time systems as
background to this discussion.
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Figure 1. Real-time system.

Distributed real-time systems

In a real-time system, a controlled object (the con-
trolled environment) and a control system (the com-
puter) are connected via sensor- and actuator-based in-
terfaces. The control system either accepts data from
the sensors at regular intervals or is driven by events. It
processes the data and outputs the results to the con-
trolled object via the actuators. The output data in-
fluence the controlled object, and the sensors observe
the effects, thus closing the loop as shown in Figure 1.

It is extremely important to avoid inconsistencies be-
tween the internal states of the control system, the con-
trol object, and the operator. The control system must
respond to a stimulus from the control object within an
interval dictated by the environment, called response
time.

The system must guarantee this response time under
extreme load and anticipated fault conditions. Typical
systems respond in 1 millisecond to 1 second or more.

If a serious failure—either in the control system or
the controlled object—closes down the plant, the sys-
tem must shut down in a controlled, predetermined
manner (fail-safe operation).

We considered the following characteristics to achieve
the requirements of timeliness and high availability.

Correct versus valid information. In a real-time en-
vironment, one must access information in two do-
mains: value and time. Information is correct if it cor-
responds with the intentions of the user. Information is
timely if it is available within the intended interval of
real time. Information qualifies as valid if it is both
correct and timely.

In the nonreal-time world, we concern ourselves
only with the value domain, that is, with correctness.
The inclusion of the time domain in real-time systems
adds a new dimension to the problem of providing
valid information. The speed of processing in a given
interval of real time (system performance) becomes an
essential property.

Real-time versus archival data. A real-time control
system performs real-time control functions and also
collects data for archival purposes. We therefore dis-
tinguish between the two databases required for these
purposes.
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A real-time database consists of the set of data
elements essential to instantaneous real-time control,
operator display, alarm monitoring, and other real-
time functions. An archival database includes the set of
data elements required for archival purposes.

Major differences exist between these two databases
from the point of view of time and fault tolerance.

The real-time database changes as time progresses,
that is, the passage of real time invalidates the informa-
tion in the database. Losing the real-time database
suspends control of the environment.

After an element has been stored in the archival
database, one cannot modify it again. It does not
change as time progresses (it is not allowed to modify
‘“‘history’’). Losing the archival database does not im-
mediately affect real-time control of the environment.

To correctly respond to an external or internal stim-
ulus, the real-time database inside the control system
must contain a valid (correct and timely) image of the
external state of the environment.

Event-driven versus periodic systems. An event
(state change) or a time signal initiates action in a real-
time system. In event-driven systems, a state change in
the environment or an external event (such as an inter-
rupt) usually initiates activities spontaneously. In
periodic systems, an equidistant time signal initiates all
system activities at predefined points in time. The time
period between related sequences of actions that are ini-
tiated by equidistant time signals is called a duty cycle.

If a system is driven by events, shielding it from
faults in the environment can be very difficult.
Spurious events can cause the initiation of more activ-
ity than the system was designed to handle. Any good
design must contain mechanisms to protect the system
from such conditions. One common hardware tech-
nique for the suppression of unwanted signals provides
a low-pass filter.

In a periodic system, the response-time requirements
of the given application under worst-case conditions
determines the duty cycle (sample rate). System design
guarantees that only a single event of a given type will
be active within a given duty cycle. A periodic system
has the advantage of implicit flow control and the pro-
tection of the system from (erroneous) overload condi-
tions caused by a fault in the environment.

A maintainable system

This section outlines the architectural principles we
followed in the design of Mars based on the principal
considerations just described.

Design for peak load. In many real-time applica-
tions, one most urgently needs the services of the con-
trol system under peak-load conditions in which all



stimuli (events) occur with maximum (but specified)
frequencies. Consider the case of an air-traffic control
system or a nuclear-reactor shutdown system. The sys-
tems must handle a peak-load condition without miss-
ing any hard real-time deadlines. If a system can do
this, it can accommodate all low-load conditions auto-
matically. Consequently, we designed hard real-time
systems for peak loads.

Transaction orientation. Mars uses a transaction
model to describe the activities of a real-time system. A
transaction is the single execution of a specified set of
tasks (generally in different nodes) between the
stimulus and the corresponding response. We struc-
tured a transaction as an acyclic-directed graph with
tasks that appear as nodes and messages that appear as
arcs. If the corresponding response has to be produced
within a given time interval after a stimulus, we have a
real-time transaction.

A transaction transfers the system from one con-
sistent state into another. In a distributed system, a
transaction can decompose into a sequence of sub-
transactions consisting of executing tasks and com-
munication phases between these subtransactions. An
external event (generated by an external state trans-
ition) or an internal event (generated inside the com-
puter system like a clock tick) can serve as the stimulus
that initiates a transaction.

Network structure with clustering. The operational
structure of a distributed, real-time control application
consists of a set of components that form a network.
These components include self-contained computers
and the application tasksS that consume, process, pro-
duce, and interchange messages between components.
The concept of clustering helps to manage the com-
plexity of a large network of components. A Mars
cluster is a subset of the network with a high functional
connectivity. Clusters are the basic elements of our sys-
tem architecture (Figure 2). Each cluster consists of
several components interconnected by a synchronous,
real-time Mars bus.

Global time. Distributed real-time systems require a
common time base (called global time) of known syn-
chronistic accuracy to measure the

® absolute time of an event occurrence,

® causal ordering of events,

¢ calculation of time intervals, and

¢ establishment of information consistency between
the real-time database and the environment.

In Mars, the underlying architecture (operating system
and hardware) provides a fault-tolerant, global time
base called system time.¢

Interprocessor communication. Mars introduces a
new type of message for interprocessor communica-

Component Component

Mars bus

Component

Figure 2. Mars cluster.

tions called the state message. The semantics of a state
message is similar to that of a global variable. A new
version of a state message updates the previous ver-
sion. State messages are not consumed when read. An
arbitrary number of tasks can read a state message an
arbitrary number of times. State messages exchange in-
formation about the state of the environment that has
been observed at a given point in time and is assumed
to hold for a certain interval of time. Since every
change of state is an event, in principle, a set of
(periodic) state messages can realize any information
exchange.

In real-time systems, the validity of information
does not exclusively depend on its correctness in the
value domain. This validity also depends on the timeli-
ness of the information.” Each message has an attached
validity time. As soon as the validity of a message ex-
pires, the operating system discards the message.

End-to-end protocols. Reliable communication can
only occur with the knowledge and help of the applica-
tion software residing at the endpoints of the com-
munication system.® Dynamic time redundancy in the
lower levels of the communication protocols increases
communication reliability. However, this redundancy
also leads to an uncontrolled increase in communica-
tion traffic under error and heavy-load conditions (for
example, implementing Positive Acknowledge or Re-
transmission protocols). Real-time systems do not
allow for a gain in communication reliability at the ex-
pense of unpredictability in communication delays. We
feel that strict control over the communication traffic
by the application software is necessary in real-time
systems to meet the timing requirements. Mars pro-
vides merely an unacknowledged datagram® with a
‘“‘no wait send”’ semantic as the communication ser-
vice. That is, the sender does not wait until the receiver
accepts the message. The (periodic) state messages
realize implicit flow control between sender and
receiver(s). One can derive the timing properties of the
application from an analysis of the end-to-end pro-
tocols in the application software.
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| Dependability Analysis

Dependability! is the property of a system that
. allows reliance to be justifiably placed on the service
it delivers. Dependability analysis concentrates on
estimation and analysis of failures and their impact.
Examples of quantitative measures are reliability
and availability. Other measures depend on the type
of application.

In Mars applications, two aspects are of special
interest for dependability analysis. First, an early
dependability analysis is preferable because of its
cost-effectiveness. The later a design change be-
comes necessary, the more it costs. The depend-
ability analysis requires close examination of the
system, including failures and mutual dependencies
of sensors, actuators, man-machine interface, oper-
ator, plant, and other subsystems.

The architecture shown in Figure A helps to struc-
ture the concepts, unify the methods and tools, and
provide an easy framework for development. Ex-
pected long-term benefits include reusability, vari-
ability, and possible standardization of methods, in-
terfaces, and tools. A layered architecture forms the
underlying principle for the design and implementa-
tion of the Mars Reliability Predictor and Low-Cost
Estimator (Marple).?

Marple fits perfectly into the concept of the con-
tractual approach used in the Mars design-system
environment. Figure B shows the interaction of the
different programs and their layering according to
the reference architecture.

One major difference exists between Marple and
other tools for dependability analysis. Most tools re-
quire a model as their input. In contrast, Marple
. generates dependability models. It is a compiler,
| translating a general-purpose design language for
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Figure A. Architectural layers and their abstractions.
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Figure B. Interaction of Marple with the design system and
SHARPE.

TDMA media-access strategy. Since we designed
Mars to master peak-load situations, its performance
must not degrade because of variations in external-
stimuli frequencies or message congestion on the real-
time bus. The media access-delay time to the bus
should be independent of bus activity. In Mars, a time-
division, multiple-access strategy (TDMA) provides a
deterministic, load-independent, and collision-free
method for media access. The duty cycles of all tasks
are synchronized in advance with the TDMA slots to
optimize the system-response behavior.

Fault tolerance by active redundancy. The fault
hypothesis in the Mars design covers permanent and
transient physical faults in the components and on the
real-time bus. Examples include transient faults caused
by alpha particles or permanent faults caused by physi-
cal degradation of hardware components. Errors in the
design and implementation of the software are not cur-
rently included in the present Mars fault hypothesis.
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We assume that components possess self-checking
properties!® and fail silently, that is, that they either
operate as intended or do not produce any results. The
various inner-failure modes of a component thus re-
duce to a single-failure mode of the component from
the standpoint of its environment: The component
doesn’t operate.

In Mars, fault tolerance relies on self-checking com-
ponents that run with active redundancy. Fault
tolerance also relies on multiple transmissions of
messages on the real-time bus. Active redundancy bet-
ter enhances reliability in hard real-time systems than
passive redundancy because it has superior timing prop-
erties. As long as any one of a set of redundant, syn-
chronized, self-checking components can operate, the
required service can be maintained. Every message is
transmitted » times, either in parallel over n buses or
sequentially over a single bus (or a combination there-
of). Therefore, the loss of n — 1 messages is tolerable.
We have developed a special tool to assess the reliabili-



distributed systems into corresponding reliability
models. Marple concentrates on application-layer
and model generation. The generated dependability
models are then analyzed by the Symbolic Hierarchi-
cal Automated Reliability and Performance Evalua-
tor (SHARPE),3 which covers layers 4 to 1 of the
reference architecture. Currently, the design is
translated into SHARPE processor-memory-switch
(PMS) models. The generation of models based on
Markov chains (MCs) is under way. Future exten-
sions may include generation of various other
models, approximation methods, and/or usage of
other tools for dependability analysis.

The application layer of Marple analyzes system
designs. Marple receives a detailed description of
the designed system in the form of a structured, text-
oriented, specification language. The basic elements
of this language are objects (such as clusters, sen-
sors, operators, and tasks), information items (no-
tions for the abstract entities of information ex-
change), and transactions (describing the func-
tionality of objects) in a system-wide context. The
power of the input language stems from the ability
to combine these elements hierarchically in a flexible
way.

The general description of the design is aug-
mented with dependability data including

® redundancy,

o failure and repair distributions,

® failure modes of the elements,

® coverage values,

* cost functions of failures (in preparation), and
* repair dependencies (in preparation).

For more complicated subsystems, one can define
submodels (reliability block diagrams, MCs, series-
parallel graphs, and combined performance and
reliability models). On the other hand, one can also

use default values for the different types of elements
of the system. Due to this general design language,
Marple is independent of the Mars design-system
environment in terms of such features as a specific
database or user interface.

Our first experience in using Marple produced an
interesting effect. Although Marple was intended as
a reliability predictor, the term ‘‘unreliability
predictor’’ proved more appropriate. Systems
without massive redundancy of sensors, actuators,
and computers expose poor reliability behavior due
to their wide-spread dependencies. Feedback occurs
immediately (not after two months of reliability
analysis) that the actual design is unreliable. This in-
formation forces the designer to

¢ think about failures,

® decide which functions are important,

¢ analyze which parts are important, and

® determine where and to what extent redundan-
cy should be applied.

Thus consideration of faults and their impact
becomes an integral part of each design step.
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ty of a given Mars application. For more details, refer
to the box entitled Dependability Analysis.

Maintainability and extensibility. In Mars, main-
tainability and extensibility result from the clustering
of components. One can remove redundant compo-
nents from a running cluster (for repair) and reinte-
grate them later. A Mars cluster can be configured with
spare capacity in TDMA-bus access, messages, and
CPU utilization. One can add new components with-
out modification of the running components until the
configuration limit is reached. If more extension is
needed, existing components can expand into a cluster.
This process converts one component in the original
cluster to an interface component showing the same
170 behavior as the old component. This interface
component forwards all messages to the added cluster
(Figure 3). The additional cluster can be designed inde-
pendently from the rest of the system as long as the 1/0
characteristics of the interface component remain
unchanged.

Added cluster

Original cluster

L]
Figure 3. Expansion of a component into a cluster.
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Mars operating system

We developed a new operating system to implement
the Mars architecture and to guarantee a deterministic
system behavior. An identical copy of the operating
system runs locally and autonomously in each Mars
component, which is a hardware/software unit as
shown in Figure 4. The operating system consists of a
small kernel and a set of system tasks.

The kernel consists of the entire code running in
supervisor mode on the CPU. The kernel’s primary
goals are

® administering resources (CPU, memory, bus), and
¢ hiding all hardware details from the tasks.

The kernel provides its functionality via a set of defined
system calls. The interfaces of the system calls—as well
as major parts of the kernel—are written in the C pro-
gramming language. Adapting the kernel alone lets
Mars port to a new hardware environment. The kernel
is responsible for the periodic execution of hard real-
time (Hrt)—or time-critical—tasks according to a
schedule calculated off line. (The section on timing

analysis describes the off-line task and message sched-
uler.) The kernel also maintains global time and
oversees the efficiency of message passing.

Real-time tasks. Hrt tasks are periodically scheduled
and must terminate before a given deadline. Thus their
reaction time and latency must be deterministic and
known in advance. An off-line scheduler calculates the
activation periods (duty cycle) based on the transaction
specification during the system-design phase. The
kernel executes these tasks according to the results of
the off-line scheduler.

Most Hrt tasks are application tasks, but some of
them are system tasks. System tasks perform specific,
hardware-independent functions of the operating sys-
tem. These functions include time synchronization and
protocol conversions to and from RS-232 strings and
Mars messages, for example. Privileged system calls
are restricted to system tasks.

All tasks that are not subjected to strict deadlines are
called soft real-time tasks. Normally an Srt is non-
periodic and utilizes the CPU idle time in low-load
situations.

Soft real-time tasks |

I
L= L __

Application | Application Application
task task task

Hard real-time tasks

Time
synchron-
ization

Protocol
conversion

System tasks

Messages
Il I Il = . 9

Scheduling Kernel

MC68000

BRRARR

— 512-Kbyte RAM —

EEEEEN

Hardware

LANCE = Local area

network controller
for Ethernet

/

CSU = Clock synchron-

Mars bus

ization unit

Figure 4. Structure of the current Mars component.
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Each Mars component has its own real-time clock
with a resolution of 1 us. Clock synchronization
consists of two parts. Internal synchronization
keeps all clocks within a cluster synchronized within

acy ADnt, External synchronization adjusts the
clocks of a cluster to international atomic time. IAT
is a physical time measure. It does not suffer from
switching seconds due to irregularities in the rota-
tion of the earth.

We based internal synchronization on normal
message passing to avoid special hardware links for
time-signal propagation. Each message contains the
time stamp of the sender’s clock. The receiving com-
ponent attaches the time stamp of the receiver’s
clock to each incoming message. Each component
records the time differences to the other compo-
nents periodically. Based on this information, a cor-
rection term for the local clock is calculated with the
Fault-Tolerant Average Algorithm (Fta). In the Fta,

Sending component

Time stamp

~

110 page
RAM

|
)DMA|

LANCE

Memory

a known constant, the internal synchronistic accur-

Interrupt

Clock Synchronization in Mars

an ensemble of n clocks may contain up to k faulty
clocks. The local clock differences d from clock i to
clock j are sorted by value: The k lowest and the k&
highest values are discarded. The arithmetic average
of the remaining values is the new correction for the

local clock . According to theory,! an upper bound

for the internal synchronization A" is given by
A -2k
e+t n-3k

where £ is the maximal tolerable drift of the clocks
during a resynchronization interval. The reading
error e is the measurement error in reading the time
of one component by another component. Due to
the cooperation between the clock synchronization
unit (CSU) and the Mars bus-controller chip
LANCE (see Figure 4), the reading error in Mars is
bounded (with 4 us) as explained later.

Figure C schematically shows the time-stamp
mechanism for messages in Mars. The CPU places

Receiving component

I/O page

DMA

LANCE —l

Memory

Mars bus

Figure C. Time-stamp mechanism in Mars.

Global time. The operating systern maintains syn-
chronized global time. The synchronization of local
clocks is based on message exchange® and is supported
in hardware by the clock synchronization unit (see the
accompanying box on that topic). We developed this
special very large scale integration unit especially for
this project. Using global time helps to implement the
following Mars features.

Validity. The system provides tasks with messages
only if their validity time has not expired when the
tasks are delivered. A task initiates the reading of a
message, and the operating system checks to see
whether the message is valid. The sender of a message
must define a validity time. The operating system inter-
nally and automatically discards outdated messages.
Thus, every task observes only valid messages.
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waiting messages in a buffer, and LANCE starts.
LANCE transmits the data to the Mars bus by direct
memory access (DMA) after this access to the bus
has been granted. LANCE can package several
memory fragments continuously into one message.
The last fragment of each message is a memory-
mapped, real-time register of the CSU that is ac-
cessed at the moment of sending. At the receiver
LANCE issues an interrupt immediately after a
message arrives. This interrupt is directed to the
CSU, which generates a time stamp. Afterwards,
the CPU stores the CSU time stamp into the re-
ceived message.

We use external synchronization to calibrate to
IAT. Long-wave radio signals provide an economi-
cal access to world time, or universal time coor-
dinated. Since UTC and IAT differ an integral num-
ber of seconds (in 1988, IAT — UTC = + 24.0sec-
onds) and the Bureau International de I’Heure pub-
lishes the time differences between UTC and IAT in
advance, any UTC receiver provides a source for
IAT.

Each Mars cluster contains a component with ac-
cess to a time standard that measures the deviation
between the cluster’s time and the world time. The
external clock-synchronization task broadcasts an
appropriate rate correction that affects the speed of
all internal clocks independently of corrections due
to internal-clock synchronization.

An instantaneous change of the local clock(s)
would lead to errors in running measurements and
disturb the periodic schedules. So the CSU supports
continuous time adjustment in hardware in multi-
ples of 1 us/s. Currently, we can achieve a typical
clock synchronistic accuracy of better than 10 us
within a cluster consisting of eight components and
100 us between two clusters.
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Schedules. Task and message schedules are calcu-
lated off line and interpreted at runtime. The schedules
are a periodic function of global time, and thus all
tasks within a cluster are synchronized according to the
communication and transaction description specified
within the Mars design system.

Consistency. A real-time database consisting of
valid messages naturally changes with time. The real-
time database of a component is stored in message lists
in the kernel. Any new message—regardless of origin—
alters the database. However, the message lists in the
kernel are updated solely during the clock-interrupt
routine. Thus the changes of message states occur si-
multaneously in all running components. After such
updates, the real-time database remains constant until
the next occurrence of a clock-interrupt routine. There-
fore, tasks operating in different components receive
the same input if they read a message with the same
name at the same time.

Self-checking features. As stated, self-checking
components produce either correct results or no results
at all. Ideally, all messages sent by a self-checking com-
ponent are correct. The processor itself detects errors
within a Mars component at the level of the operating
system. The kernel must perform numerous checks to
prevent erroneous messages from being sent to other
components.

The mechanisms within the Mars operating system
check both the correctness of information 1n the value
domain and its validity in the time domain. Checks in
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the value domain include plausibility tests and time-
redundant execution of tasks. In the time domain,
these mechanisms check runtime limits, global time
limits, and the timing behavior of the tasks with respect
to the timing requirements of the controlled system.

When the operating system detects an error, it at-
tempts to logically turn off the component regardless
of whether the fault is transient or permanent or has
occurred in hardware or software. The operating sys-
tem fails silently to prevent error propagation within
the cluster and to provide fault isolation. We con-
ducted numerous experiments with specially designed,
fault-insertion hardware to evaluate the self-checking
features of Mars components

Message passing. Mars messages are sent as periodic
real-time datagrams that each contain a validity time.
These messages carry status information only. State-
message semantics provide the following advantages
for operating-system design.

Flow control. A periodic state message implicitly
controls flow in the duty cycles of involved senders and
receivers. The off-line scheduler synchronizes sending
and receiving rates. Even in case of a fault (a sender is
too fast or a receiver too slow), a buffer overflow in the
operating system is impossible due to the overwriting
of previous state messages by more recent instances.

Message redundancy. Backward-error-recovery pro-
tocols usually delay communication unpredictably.
Thus these protocols can implement massive redun-




dancy at the message level. Each message on the Mars
bus is sent twice or more, depending on the fault
hypothesis and the transient-failure probability of the
bus.

The Mars bus is a Cheapernet version in which we
measured an experimental message-loss probability of
1:105. Sending each message twice decreases the
message-loss probability to 1:101° (in case of statisti-
cally independent failures), which is comparable to the
failure rates of the component hardware.

Support of component redundancy and recovery.
Two or more components running in active redundan-
cy produce logically equivalent messages. Due to the
state semantics of messages, only the most recent of
two or more valid messages must be stored at the
operating-system level. The filtering of redundant
messages occurs within the kernel.

The operating system does not note the actual num-
ber of receivers or senders of a Mars message. Thus,
one can insert redundant components into an opera-
tional system without any reconfiguration, modifica-
tion, or notification of the running components.

As explained, every message contains a validity time
to limit its lifetime. If a new component is added to a
running system, it needs to fetch the real-time data-
base. Since the message lifetime has a global upper
bound, a new component collects messages only for
this maximum period. After that, the recovery of the
real-time database completes, and the new component
can start its activity.

Efficiency issues. Any real-time system must guar-
antee reaction or transaction times. Therefore, it is rea-
sonable (but not sufficient) to optimize certain
operating-system procedures. This process requires the
efficient handling of peak loads even at the expense of
degrading the performance under average loads.

Interrupts. Only the real-time clock can interrupt the
CPU. Other interrupt routines are disabled or used for
time-stamping mechanisms by the CSU chip. The clock-
interrupt routine periodically polls all peripherals—
even the serial input-output chip for an RS-232 line.
Thus the operating system is time rigid and deter-
ministic in its kernel.

Path length. The application-independent overhead
involved in message passing, measured in number of
executed assembler instructions, is known as parh
length. The total path length for sending and receiving
a message can be 20,000 to 50,000 in an Open Systems
Interconnection protocol.!! In Mars we keep the total
path length as short as possible. When a task sends or
receives a message, only a pointer to the message ex-
changes with the operating system. Any physical mes-
sage copying is avoided. Otherwise the CPU would
totally occupy itself with copying messages.

Message buffers. We kept constant the number of
buffers needed within a component to overcome the
buffer-allocation problem. We used the following
method. All tasks must have preallocated message buf-
fers before they can send or receive a message. A task
must return one of its message buffers to the kernel
when it receives a message. Similarly, it receives a new
buffer when it sends a message.

Schedule switch. Process-control systems exhibit
mutually exclusive phases of operation and control.
For example, the start-up of an industrial plant can
consist of a complicated procedure that is quite dif-
ferent from the control of a production line or an
emergency stop of a machine. The overhead for con-
trol changes must be kept low, while the reaction time
in emergency situations must be short.

In Mars, introducing a set of schedules solves this
problem. All tasks for all schedules must reside within
a component, but only one schedule activates at a given
point in time. In case of a phase change or an emergen-
cy, a Mars message can trigger a simultaneous switch
to another schedule in involved components. The reac-
tion time to switch to a new schedule equals the time
until the next clock-interrupt routine.

Timing analysis

One can guarantee the predictability of the time
behavior of real-time systems only if the peak-load
conditions of the system are known before runtime.
This requirement necessitates using a static set of tasks
for a component. From the aspect of timing analysis,
such a static set of communicating periodic tasks are
described by their duty cycle, their maximal execution
time (Maxt), and the component in which they are exe-
cuted. The designer specifies all these attributes
through the Mars design system (see the box on the
next page). This system provides all relevant data for
timing analysis.

The TDMA slots of the Mars bus are assigned to the
components in round-robin fashion. If a receiving task
of a message resides on a component different from
that of the sending task, that message must be broad-
cast (or exported) on the Mars bus. Each exported mes-
sage requires a TDMA slot of the component running
the sender task.

The tasks of a transaction in their entirety represent
the implementation of a required stimulus-response ac-
tion. The timing requirement of such a transaction is
expressed by its maximal response time (Mart). A Mart
includes

® the latency between the stimulus to the first task
that uses this stimulus,

® a Maxt of the tasks involved,

* the communication times between these tasks, and
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The Mars Design System

To control the design of Mars objects—such as
transactions, clusters, components, tasks, and mes-
sages—we developed a special design methodology
supporting both the creation of a Mars application
and its evaluation. This computer-aided, real-time
design methodology allows cost reduction and fault
minimization in the development of critical and
complex real-time applications.

The Mars design system does not view design ac-
tivities and the support of a special design method-
ology as isolated problems. Respectively, the system
does not provide isolated tools but rather integrates
them into a coherent design environment. Our ap-
proach covers management aspects and life-cycle
support of system development right from the
beginning. These environments are termed method-
based environments in the classification system de-
veloped by Dart et al.!

Figure D gives an overview of the entire tool sys-
tem.? Its structure contains two dimensions:

* e programming in the large and programming in
the small, and
® design creation and evaluation.

The term programming in the large covers the
phases from the specification of requirements and
overall system design to the specification of the
component level characterized by tasks and
messages. Programming-in-the-large design steps
manage design creation and its evaluation before
coding takes place. Programming in the small is

Design creation Design evaluation

Requirements
definition

¢

System design
Cluster definition

Programming
in the large

Cluster design
Cluster-path design  [##
Component definition

t

Component design
Task definition

Dependability
analysis

Timing
analysis

i
¥

Task design
implementation

Programming
in the small

|
Figure D. The tool system.

concerned with the inner construction of tasks, their
implementation, and programming issues.

The second dimension distinguishes between
design-creation tools and design-evaluation tools.
Design-creation tools support the system analyst in
the creation of a distributed real-time application.
The activities in each step are detailed in Senft.?
Evaluation tools analyze a given design and verify
the proposed requirements. The dependability-
analysis tool analyzes the system structure and
possible failures. It computes measures for reliabili-
ty, safety, and availability of the entire system (or
system parts). The timing-analysis tool concentrates
on the pre-runtime, static scheduling of the designed
tasks and messages. If a schedule exists, the pro-
grammer has to code the tasks to meet specified exe-
cution times and interfaces. A key concept of the
design environment is that the design-verification
phases precede the coding activities.

Each tool maintains its own local information
base. The highly interactive design-creation tools
must provide the engineers with efficient storing and
retrieval mechanisms of the designed information as
well as with consistency and integrity checks. Rela-
tional database systems offer these services. Actual-
ly, we used an extended relational database ap-
proach to manage large objects of variable length.
For the first prototype, we employed the relational
database management system DB + +,4 in connec-
tion with the Unix file system. (The current version
comprises 103 relations, each containing an average
of 5.2 domains.)

Strictly defined interfaces control data exchange
between tools. The management structure of a con-
tract® handles these interfaces, more explicitly the
inputs, outputs, environmental data of a tool, and
the management of the project members. The fun-
damental prerequisites for reasonable design consist
of well-defined activities and clear assignment of
responsibilities to members at all times. A tool and
its local information are based on the principle of an
information-hiding module; the contract is based on
the principle of an abstract interface.6

In principle, each tool can execute on a different
machine, thus supporting project members in vari-
ous organizational or geographical entities. Tools
(and project members) exchange information via
contracts. The entire setup is Unix-based. Hence,
contract passing is embedded in standard Unix mail
and is transparent to the user.

We developed the highly interactive, design-
creation tools under the X Window System. Their
user interface is uniformly organized. Tiled win-
dows allow engineers to concentrate on their design
activities without having to waste time on window
management and hidden-window searches.

Figure E illustrates the user interface of the sys-

34

IEEE MICRO



1D

UOUTAUA U0  dO\J3u00

PrE P

IONUOIIAS  ujeUedo 1843u00
= &5 &
T ugrtos

iy

SHLYUd-¥31SN71J 8 SyI1SN1J

USWUOJ T AR

JO3e Jedo

B

el

T PURIS 8IS TPURYS

R

duIIETI00S ETWIIE T [eME

MR "OSTOBIE SURLY " xOUdde
W L L]
a n
PD PD
S133080 G3INIJIN

/ UOJTAUS\U3UOD

do\ u3uoo

1600

TTTW-BUTTTO4 WaIShS —- NIISIA ST SPOW

1IE

WIS pUES HHPINIT[NS  AueidTIens

E B &

JORMNIOE"PUEIS JOSUIST (8IS

=

S1330E0 SNOIAIANd =

00341 8wy £2-90-88 :a3ied

= TOJUUOD

UTTT0d :393[0ug

upewoq antep
oasw T b4 1w ewmty g
utewoq anea
dasw T I 3019 eng

N uAZ\hvbﬂﬂ.1I".‘ sng -8 19219

*S103eN3DR-pURYS

Y3z 03 $ITNSIJL Y3 S3INd3IN0 pue (IUO 3sToaud

T@ pue Juo IJRWTXOudde ue) STIPOow OM3 BUTSN SNanTea
lu..:‘uuua..mvcnuu dYa sandwod ‘(R3Tueur]d pue SSaUNOTYI)
TTTe3ep _SJ0SUIS-TIIIS IYJ $3d3000 UIISNTO TOUJUOD Y|
tuoyjjdjroeaqQg

1043u02 tewme N

¥arsn1d

BNErSeee————

ydied tuas) e ————

35

February 1989

Figure E. User interface of a Mars system-design tool.



Mars

tem design for a rolling mill controlled by Mars
(discussed elsewhere in this article). The right side of
the screen shows objects in an iconic representation.
The upper right window contains objects—that is,
transactions, spots, and data items resulting from a
previous design step (in this case from the require-
ments-definition phase). We refined some of them
to further subobjects (transactions to subtrans-
actions), which are displayed in the middle right
window. The lower right window displays new ob-
jects such as cluster and cluster paths that have been
designed at the current design level. The left side of
the screen is reserved for design and development in
a textual and graphical manner. The window in the
upper left half shows a textual representation of the
currently treated object, while the window in the
lower left part offers the following functions:

e definition and refinement of objects with a

built-in graphics editor,

e display of several decomposition and relation-

ship diagrams,

® graphical support for establishing relations be-

tween objects, and

¢ document preparation.

The interaction between designer and tool is mainly
managed by dragging icons to the different win-
dows. This process of combining an icon with a win-
dow invokes a predefined action. For example,
moving a cluster icon into the text window displays
an editable template for gathering the information
relevant to a cluster.
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Figure 5. Communication structure of tasks T1 through T11 in a
transaction.

® the time from the end of the last task until the
response.

Here we assume that all tasks in a transaction are
allocated to components within a single cluster.

As soon as the designer has refined the transactions
to a task-message system and has estimated the Maxts
of the tasks, the off-line task and bus scheduler
calculates a preliminary schedule for the designed
tasks. As the task implementation proceeds, a value
derived from the actual source code using a source-
level, execution-time analysis tool replaces the
estimated Maxts. If no schedule for the task set can be
found to guarantee the specified transaction times, the
design needs revision.

Off-line task and bus scheduling. The schedules for
tasks and messages are calculated by the off-line task
and bus scheduler before runtime and stored in a run-
time scheduling table. Figure 5 shows task transactions
executed on components 4 and B and their internal
and external communication. Figure 6 outlines a possi-
ble schedule for this example of a transaction. Because
all tasks of components A and B have the same time
period, both component cycles equal the period of the
tasks.

For the bus schedule of the entire cluster, we assume
a system with eight components. Only the TDMA slots
assigned to components A and B are marked explicitly.
The TDMA slots not available for components A and
B are marked with the letter X. The schedule of the
tasks within a component satisfies the precedence con-
straints according to internal message exchange. Figure
6 shows only the exported messages that are of interest
for the bus schedule. The CPU schedule must be syn-



chronized to the bus schedule to minimize the com-
munication time between tasks of different components.

Because only one message can be sent per TDMA
slot, exported messages have to be scheduled appropri-
ately. For example, if TDMA-slot B, where task T8
sends its message were already used by a T7 message,
the T8 message would have to be scheduled for another
bus slot available for component B (B; in our
example).

In a first attempt, we developed a two-pass schedul-
ing algorithm. The first pass tries to minimize the com-
munication times between the tasks allocated to the
same component. Tasks executed on one component
have a higher interconnectivity. We used a modified
version of the CP/MISF (critical path/most immediate
successor first) strategy!? for this purpose.

In the second pass, a TDMA slot of its component is
reserved for each exported message of a task. The
schedules of all components shift to minimize the com-
munication times between tasks of different compo-
nents. Koza provides a detailed description of this two-
pass sceduling algorithm. 13 This algorithm attempts to
reduce the communication times in a cluster. Totalling
the execution and communication times of the tasks in-
volved in the transaction verifies whether the Mart of
the transactions can be met.

To improve schedule generation, we developed an
off-line algorithm that better accounts for the Mart of
a transaction. This algorithm is based on a heuristic
search strategy.'4 A heuristic function that calculates
task urgency according to estimates of the time neces-
sary to complete the transaction controls the inspected
part of the search tree. Zhao, Ramamritham, and Stan-
kovic describe an algorithm that works similarly on a
problem that is quite different because it does not take
precedence relationships between tasks into account. !’

CPU-schedule component A

le Component-cycle A

Source-level, execution-time analysis. Because the
Maxt estimation of real-time tasks is critical, a special
tool that derives the Maxt of a task from its source code
supports designers. The estimation of the execution
time of tasks requires bounded loops and prohibits re-
cursions. '6 Maxt estimates must be very close to real
Maxts. If the estimate is too high, excess time reserved
for task execution unfavorably reduces CPU activity.
Good Maxt estimations require program constructs
that allow programmers to exploit knowledge about
the execution of their algorithms.

Processor performance also affects the execution
time of application tasks, and designers must consider
this during timing analysis. On each clock tick a known
amount of time is used to dispatch tasks and administer
incoming and outgoing messages. The percentage of
CPU time that is not available for application tasks is
expressed as the CPU availability factor. This factor
can vary according to hardware devices connected to
the component and their generated DMA load. This
factor also makes it possible for the scheduler to adapt
the theoretical Maxt of each task in a component to an
effective Maxt.

A typical Mars application

This section discusses the control of a rolling mill,
which produces metal plates and bars.

Production control proceeds as follows. A sheet of
steel passes through three pairs of rolls with a speed of
about 10 meters/second (see Figure 7 on the next page).
A sophisticated sensor system periodically measures
the thickness and planarity of the surface of the steel.
The raw sensor data are processed in node D (process-
ing time, 2 milliseconds) to generate a periodic message

.|

!
L T1 T2 | T3

[ |

/
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CPU-schedule component B

Figure 6. Bus and CPU schedule of a simple cluster.
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M, describing the quality parameters of the product.
This message is broadcast on the Mars bus. Nodes G
and H accept M, from the bus and calculate the set-
point vectors for the stands. Node G contains a simple
model that always produces an approximate result
message M, ahead of the deadline (say 10 ms). Node H
contains a sophisticated model that produces a better
result M3 than node F but sometimes misses the
deadline.

The results of both model calculations are broadcast
on the bus. If the ‘‘better’’ result, M3, has not arrived
until the specified deadline (or does not arrive due to a
failure of node G), nodes A, B, and C take the approx-
imate result, M,, from node G and position the stands
accordingly. Furthermore, nodes A4, B, and C collect
operating data from each stand and distribute them on
the Mars bus. The operator station E can access any
real-time data from the Mars bus without interfering
with the operation of the other components. It can also
output the data in an appropriate format on a man-
machine interface. Node F collects relevant informa-
tion about the operation of the process and transmits it
to other computers.

In this application, the real-time clock in node D
triggers the most important time-critical transaction. It
visits nodes G and H in parallel before delivering the
results to nodes A4, B, and C in parallel. The response
time of this transaction has an important influence on

()

the quality of rolling-mill control. Since this trans-
action is scheduled without any unnecessary delay, it
takes 2 ms of processing in D, 1 ms for transport on the
Mars bus to Fand G, 10 ms of processing in Fand G,
and, finally, 1 ms for transport to 4, B, and C—for a
total of 14 ms. This time is about an order-of-magni-
tude faster than the response time achieved with a stan-
dard, central real-time computer. (A single computer
has to perform all the parallel tasks in a timesharing
mode that are assigned to eight nodes in the Mars dis-
tributed solution.) Exploiting the parallelism inherent
in Mars’ distributed architecture achieves a significant
degree of its acceleration.

We configured the message formats, the CPU slots,
and the TDMA protocol with spare capacity in the
original design. As long as any change can be accom-
modated within this spare capacity, no modification of
the schedules is required. If, however, a more powerful
model is developed that cannot be processed on node G
within the allocated time of 10 ms, that node can ex-
pand into a new cluster. This cluster increases the pro-
cessing power manyfold without changing the interface
(value and timing) to the original cluster. If the incor-
poration of fault tolerance is envisaged, additional
slots on the TDMA bus for the redundant components
must exist. As long as any of the redundant compo-
nents is operating, the system provides the intended
service on time.

Speed: 10 meters/s
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AM = Approximate model
PM CC = Communication component
MMI = Man-machine interface

PM = Precise model

Figure 7. A rolling mill controlled by Mars.
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he Mars project presents a solution to the prob-
T lems of distributed, fault-tolerant, real-time sys-
tems. Mars copes with the needs of hard real-time
systems in a number of ways. Each application for Mars
is evaluated during its design and implementation phase
with respect to runtime behavior to guarantee its trans-
action times. Users must know the frequency of all con-
trol procedures and involved reaction times in advance
and realize them with an appropriate off-line schedule
for the CPU and bus access. Each schedule is a periodic
function in time, and the entire operating system is con-
sequently driven only by time and not by events. Thus
unexpected events cannot disturb the system behavior,
which guarantees a time-rigid determinism.

The granularity of the system time is 1 us. The sys-
tem time is synchronized with an accuracy of 10 us
among the components of a Mars cluster. Scheduling
decisions with a granularity of 8 ms achieve synchro-
nism in the distributed system.

Mars messages have a fixed length and header for-
mat for standard interfacing to application tasks and
intelligent process-control peripherals. Mars messages
are state messages, that is, a more recent instance of a
message updates the older one (comparable to global
variables) to overcome flow-control and buffer-
allocation problems. Mars messages have a validity
time attached, after which the operating system auto-
matically discards the message. Thus only valid
messages arrive at the application, which guarantees
short-term data integrity. The bus can transport a data
volume of up to 1,000 messages per second.

Mars achieves fault tolerance by means of active
redundancy (logically by sending each message twice
and physically by having two or more components exe-
cute the same tasks). The Mars dependability analysis
determines the degree of redundancy required. Each
component has intrinsic self-checking mechanisms that
safeguard the component’s fail-stop behavior for fault
isolation. Thus a component either sends correct infor-
mation, or it is silent.

The cluster concept allows extensibility of the whole
system. A logically equivalent interface to a new cluster
can substitute for each component without modifica-
tion of the rest of the system. One can add components
for such passive observations as process monitoring or
data logging to the bus without modification of other
components.

Mars’ current implementation serves experimental
purposes. Presently, we have 16 available Mars hard-
ware components that can be split into one-to-four
Mars clusters. The purpose of this experimental system
is to help evaluate the Mars architecture and to provide
a testbed for future research in distributed fault-
tolerant, real-time systems. Exploratory areas include
self-checking methods, reliable broadcast, real-time
databases, recovery strategies, time-synchronization
algorithms, and consensus algorithms.
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