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Abstract—This paper describes the Multicomputer Architec-
ture for Fault-Tolerance (MAFT), a distributed system designed
to provide extremely reliable computation in real-time control
systems. MAFT is based on the physical and functional partition-
ing of executive functions from application functions. The
implementation of the executive functions in a special-purpose
hardware processor allows the fault-tolerance functions to be
transparent to the application programs and minimizes overhead.
Byzantine Agreement and Approximate Agreement algorithms
are employed for critical system parameters. MAFT supports the
use of multiversion hardware and software to tolerate built-in or
generic faults. Graceful degradation and restoration of the
application workload is permitted in response to the exclusion
and readmission of nodes, respectively.

Index Terms—Approximate agreement, distributed systems,
fault tolerance, flight control, interactive consistency, real-time
systems.

1. INTRODUCTION

THE computerization of life-critical control systems has
placed extreme safety requirements on real-time
computing systems. Perhaps the most stringent requirement to
date is that proposed for flight-critical control functions in
advanced commercial transport aircraft. The failure probabil-
ity of such systems is required to be about 10~ 10/h; this is
approximately three orders of magnitude more stringent than
the corresponding requirement for military aircraft {1]. In
those few systems designed to specifically address this
extreme level of dependability, fault-tolerance is achieved
through modular redundancy and the voting of data from
replicated tasks [2]-[4].

Many problems unique to extremely reliable real-time
systems were first addressed by the Software Implemented
Fault-Tolerance (SIFT) distributed computer system 121, [9],
leading to some fundamental results in fault-tolerance theory
[8]. However, performance measurements have shown that
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SIFT executive functions can consume up to 80 percent of the
system throughput [5]. This result demonstrates that the
computational overhead of maintaining fault tolerance can
seriously detract from the system resources available for
application functions. A contemporary alternative to the
software intensive approach of SIFT is the Fault Tolerant
Multiprocessor (FTMP) [3]. FTMP provides hardware assist-
ance for several system executive functions, such as voting
and synchronization. Still, studies have shown that up to 60
percent of the system throughput can be consumed by FTMP
executive functions [10]. A descendent of FTMP is the Fault
Tolerant Processor (FTP) of the Advanced Information
Processing System (AIPS) program [11]. FTP has shown
much higher efficiencies than either SIFT or FTMP [4].
Whereas SIFT and FTMP are multiprocessor systems, FTP
functions as a uniprocessor, employing redundant processing
channels solely to provide fault tolerance. The effective
processing power of FTP is thus limited to that of a single
processor.

This paper describes a system called the Multicomputer
Architecture for Fault-Tolerance (MAFT) [7], a distributed
computer system designed to combine extreme reliability with
high performance in a real-time environment, which is the
result of an extended research effort in ultrareliable fault-
tolerant systems [6].

Johnston et al. [1] have tabulated the system requirements
for a variety of aerospace-related control applications. These
requirements can be partitioned into two categories: perform-
ance and dependability. For a commercial flight-control
system, the performance requirements are characterized by
control loop frequencies (iteration rates) of up to 200 Hz,
instruction throughputs of up to 5.5 million instructions per
second (MIPS), 1/0 rates of up to one million bits per second
(MBPS), and a transport lag (input to output delay) as short as
5 ms. These numbers are representative of the applications
that MAFT was meant to support, and are taken as minimum
performance objectives for the system. The major dependabil-
ity objective of MAFT is the mission safety specification that
the probability of system failure be approximately 10-'%%h
over a 10 h mission, without repairs. To meet this objective,
MAFT must tolerate subtle and highly improbable faults, such
as multiple coincident faults, malicious or *‘Byzantine’’ faults,
and built-in or ‘‘generic’’ faults.

Section II presents an overview of the MAFT architecture.
Section III, comprising the bulk of the text, describes how the
executive functions are implemented in MAFT. It also
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Fig. 1. MAFT system architecture.

discusses the capabilities and limitations of the current
implementation of the architecture.

II. MAFT ARCHITECTURE

A MAFT system consists of several semi-autonomous
computers (nodes) connected by a broadcast bus network, as
shown in Fig. 1. Each node is partitioned into two separate
processors called the operations controller (OC) and the
application processor (AP), respectively. The OC is a hard-
ware-intensive data-driven processor designed to handle the
vast majority of the system’s executive functions. These
functions include internode communication and synchroniza-
tion, data voting, error detection, task scheduling, and system
reconfiguration.

The OC/AP partitioning leaves the AP free to execute the
application programs. Typical application functions per-
formed by the AP include reading sensors, performing control
law computations, and sending commands to actuators. While
the OC is a specific device common to all MAFT systems, the
AP may be any processor appropriate to a given application.
The AP operating system may be extremely simple, since
overall management of the distributed system is performed by
the OC.

A problem facing any distributed system is maintaining
agreement between nonfaulty nodes in the presence of faults.
Various parameters may require exact or Byzantine Agree-
ment [8], or Approximate Agreement [13]. A variety of
solutions to the distributed agreement problem exist. The
earliest solution employs hardware interstages in the commun-
ication paths [14], as used in FTP. Others make constraining
assumptions about the behavior of the communication system
[20], [21]. In MAFT, it is assumed that any error is possible,
no matter how malicious. Therefore, interactive consistency
[15] and convergent voting [13] algorithms are applied where
required to maintain Byzantine Agreement and Approximate
Agreement, respectively.

It is difficult to quantify the probability that generic faults
exist in any given system. However, software fault-tolerance
studies have shown that the existence of generic faults cannot
be ignored [12]. To deal with generic faults, MAFT permits
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the use of design diversity in both software and hardware. This
feature complicates the problem of detecting faults and
managing the system. For example, truly dissimilar copies of a
given task will most likely have slightly different execution
times. Similarly, differences in such factors as numerical
stability, arithmetic precision, and timing can cause slight
differences in the various copies of a given data value. Unlike
SIFT, FTMP, and FTP, equality among nonfaulty copies of a
particular data value is not required in MAFT. Also, unlike
FTMP and FTP, copies of a task are not required to run in
exact synchrony.

Two MAFT prototypes are currently being implemented.
The first is a demonstrator in which the OC’s are implemented
in standard 7400 series TTL technology. To date, four of six
planned nodes have been assembled and operated as a system.
In the second prototype, the OC’s are implemented in a set of
seven 2 um CMOS chips. The current realization of the
architecture will support up to eight nodes, providing suffic-
ient redundancy to tolerate multiple coincident faults.

III. OC FuNncTIONS

The OC is a special purpose data-driven processor com-
posed of several semi-autonomous subsystems. These subsys-
tems, illustrated in Fig. 2, perform the executive functions
listed in Fig. 1.

Communication

Each OC has two communication functions. It must
communicate with all other OC’s in the system, and with its
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own AP. An OC communicates with the other OC’s through
formatted messages transmitted over its dedicated serial
broadcast link. The effective bandwidth in the demonstrator
implementation is about one MBPS per node. Dedicated
receivers in the receiver subsystem monitor each link and
receive all messages broadcast by the OC associated with that
link. The Message Checker subsystem subjects each received
message to a variety of physical and logical checks. Messages
deemed to be correct are passed to the other subsystems, as
appropriate, for further processing.

Messages are classified as data, scheduling, synchroniza-
tion, or error-management messages. A data message is
broadcast by an OC whenever it receives a computed data
value from its own AP. There are two types of scheduling
messages: the task completed/started (CS) message, transmit-
ted by an OC whenever its own AP completes an application
task, and the task interactive consistency (TIC) message,
transmitted by all nodes at predefined intervals. The synchro-
nization or system state (SS) message is also transmitted by all
nodes at predefined intervals. There are two types of error-
management messages: the error report (ERR) message
transmitted by a node when it detects an error committed by
any node, and the base penalty count (BPC) message,
transmitted by all nodes at predetermined intervals. The BPC
message informs the recently powered-up node of the error
status of all nodes in the system.

The contents of all internode messages are protected by a
strict link protocol and an error control code (ECC). However,
the fault tolerance of MAFT is not predicated upon the reliable
delivery of all messages. MAFT relies on modular redundancy
and distributed agreement algorithms to mask the effects of
corrupted messages. While the ECC and link protocols cannot
guarantee the detection of individual corrupted messages, they
do probabilistically preclude the persistent undetectable cor-
ruption of multiple messages.

An OC communicates with its AP through an asynchronous
parallel interface located in the Task Communicator subsystem.
The interface appears as a simple input/output device to the
AP. This approach eliminates the need for special purpose
interfacing hardware or software in the AP. Upon completion
of a task, the AP informs the OC. The OC responds with the
next task to be started. The AP immediately starts the new task
while the OC broadcasts a CS message to all OC’s. Voted data
required by the task are provided by the OC from the data
memory as requested by the AP. Similarly, the OC receives
from the AP any output data which require voting. Each data
value is broadcast to all OC’s in a data message as soon as it is
received from the AP.

Synchronization

There are two major synchronization functions in MAFT;
the first pertains to steady-state operation, the second to
startup. The steady-state algorithm is responsible for maintain-
ing synchronization of the nodes in the ‘‘operating set,”” which
is defined as the subset of the system nodes that are
synchronized to each other and considered to be nonfaulty.
The startup algorithm has two modes: ‘‘cold start” mode for
the initial synchronization of the system, and ‘‘warm start’’
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mode for the synchronization of a node to an existing
‘‘operating set.”’

Steady State: The steady-state algorithm is similar to that
used by SIFT [9]. Loose, frame-based synchronization is
achieved through the exchange of system state (SS) messages
whose transmission implicitly denotes the local clock time.
One iteration of the steady-state algorithm entails the broad-
cast of two versions of the SS message. For the first message,
cach node counts a nominal number of local clock ticks and
then broadcasts a *‘presync’” SS message. Each node times-
tamps these presync messages on receipt. Since all nodes use
the same nominal count parameter, each local timestamp is a
function of the sending node’s initial synchronization skew,
the sending node’s local clock rate, and the message transmis-
sion delays across the link. Each node computes an error
estimate as the difference between the timestamp for its own
presync message and its voted value for all the presync
timestamps. The error estimate is used to adjust the number of
clock ticks counted before sending the second message. For
the second message, each node counts the locally adjusted
nominal number of clock ticks and then broadcasts a ‘‘sync’’
SS message. Voted timestamp values are produced by the
fault-tolerant voting algorithm described in the data manage-
ment and voting section. The correctness and accuracy of this
algorithm may be derived by regarding it as a hardware
implementation of Srikanth and Toueg’s optimal clock syn-
chronization algorithm [17].

The accuracy of steady-state synchronization depends on
several parameters: the length of the synchronization interval,
clock drift, and message delivery delay. In a worst-case flight-
control configuration, the nodes are physically distributed
throughout a large aircraft. Given this configuration, the skew
between any two nonfaulty nodes will not exceed 18 us in the
current OC implementation, even in the presence of a
malicious fault.

Startup: In previous systems, guaranteed automatic startup
was not considered necessary [16]. However, reliable *‘cold
start”” may be required to recover from catastrophic midmis-
sion events, such as a severe lightning strike or multiple power
supply interruptions. Reliable ‘‘warm start’”” is required for
graceful readmission of nodes previously excluded for tran-
sient faults.

For cold start, all nonfaulty nodes converge to and agree
upon a single operating set. Each node synchronizes tempo-
rally by iteratively timestamping, in overlapping buffers, the
receipt of SS messages for a given period of time. The period
is chosen such that one iteration of the synchronization
algorithm by any operational, nonfaulty node will be heard.
Each node’s synchronization interval is determined from these
data and voting produces a target synchronization time. Only
bounded corrections which shorten the second synchronization
message interval are allowed in converging to the target time.
This is an implementation of a nonterminating Approximate
Agreement algorithm [13].

Termination of the cold start algorithm is achieved by
Byzantine Agreement. In the interval preceeding the presync
SS message, each node records a bit vector denoting which
other nodes are “‘in sync with>* (ISW) it. The ISW vectors are
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broadcast in the sync SS message. If all the nodes were started
at approximately the same time, with no faults, it would be
sufficient to determine the largest clique from the received
ISW vectors. An operating set would be formed when enough
nodes were in the clique. However, variations in message
delivery time or the presence of faults may produce asymmet-
ric ISW vectors (node / in sync with node j, but not vice
versa). Therefore, the received ISW vectors are rebroadcast in
the presync SS message. An interactive consistency algorithm
is used to compute consistent ISW vectors, and reduce them to
a potential operating set vector. When there are max [(3f+ 1),
((N72] + 1)] nodes in the potential operating set vector
(where fis the maximum number of maliciously faulty nodes,
and N is the number of nodes in the system), reconfiguration
to that operating set may be initiated.

During warm start, an operating set already exists. A
starting node announces its intention to join the operating
nodes by beginning to broadcast SS messages. If the starting
node detects at least max [(3f + 1), (N/2]| + 1)] operating
nodes, it converges to its voted value of the operating nodes’
timestamps. When the starting node has synchronized itself
with the operating nodes, the operating nodes may reconfigure
to include it in the operating set.

Data Management and Voting

Each OC stores a copy of all shared application data values
in its own data memory. This scheme provides N-way
redundant storage of all data, and makes it immediately
available to any node. The OC handles the management and
voting of application data in a manner transparent to the AP.

Each data message is tagged with a data identification
descriptor (DID) which uniquely labels the data contained in
the message. Upon receipt of a data message from any node,
each OC performs reasonableness checks to filter out data
which are outside of predefined maximum and minimum
limits. Data which pass the reasonableness checks are for-
warded to the voter subsystem and trigger a new vote on the
values with that DID. The voter does not wait for the arrival of
all expected copies of a DID. Rather, it performs an *‘on-the-
fly’’ vote using the new copy and any previously received
copies. If one copy of the task generating the data value should
fail or “*hang,”’ the voted value of the remaining copies is still
available.

A dynamic deviance check verifies that all inputs used in the
voting process are within a specified window of the voted
value. The size of the deviance window is individually defined
for each DID. The voter performs the deviance check every
voting cycle and identifies the source node for each copy which
fails the check. Deviance checking and on-the-fly voting
permit truly dissimilar versions to be employed in both
software and hardware.

Two algorithms are available for voting on application data.
The first is the familiar ‘‘median select’” (MS) algorithm
which selects the center value for any odd number of inputs
and averages the two central values for an even number of
inputs. The second algorithm is the ‘‘mean of the medial
extremes’’ (MME). These algorithms are just two variations in
the more general Fault-Tolerant Midpoint voting strategy [13].
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This strategy discards the u most extreme values from either
end of a sorted set of NV inputs, and computes the mean of the
two remaining extremal values. Computationally, the MS and
MME algorithms vary only in their choice of u. MS uses p =
LN = 1)/2], whereas MME used u = [ (N — 1)/3].

The two algorithms offer different fault-tolerance proper-
ties. MS is the more robust algorithm since it discards more
extremal values than MME. However, MME is convergent in
the presence of up to u erroneous copies regardless of the
nature of those errors. Dolev [13] has shown that MME has a
guaranteed convergence rate of 1/2. Conversely, a malicious
error can prevent MS from converging. The application
designer selects which of the two algorithms is to be used for
each DID.

Application Task Scheduling

In MAFT, the application software is broken into tasks—
indivisible blocks of code which must be executed without
interruption on a single AP. As viewed by the OC, each task
has several properties: iteration frequency, relative priority,
desired redundancy, and intertask dependencies.

Dependencies between tasks may include concurrent forks
and joins (AND-FORKS and AND-JOINS) or conditional branches
(or-ForRks and or-JoiNs). The MAFT scheduler subsystem
treats all tasks as periodic. Nonperiodic behavior is obtained
through conditional branching. MAFT supports tasks of
varying frequencies within the constraints of a binary fre-
quency distribution, i.e., all frequencies are 2~/ times the
highest frequency, where j is a nonnegative integer.

The iteration period of a task is the reciprocal of its
frequency. The shortest iteration period in the MAFT hierar-
chy is the ‘‘atomic period,’’ so called because it is indivisible
with respect to iteration periods. The boundaries between
atomic periods coincide with the transmission of an SS
message. While no single task may be repeated more than once
per atomic period, several shorter tasks may be scheduled and
executed on each node during the same atomic period.
Conversely, a low-frequency task may run for several atomic
periods.

The longest permissible iteration period is referred to as the
“‘master period,”” and corresponds to the period of the lowest
frequency task in the workload. The current OC implementa-
tion allows up to 1024 atomic periods per master period,
permitting tasks of up to ten distinct frequencies to execute
concurrently.

Scheduler Operation: The scheduling strategy selected for
MAFT is a fault-tolerant variation of a deterministic priority-
list algorithm. In this approach, each task is assigned a unique
priority number. When a node becomes available, the list of
tasks is scanned in order of decreasing priority. The first task
encountered which is ready for execution is selected. In
MAFT, the assignment of tasks to nodes is determined by the
task reconfiguration process and is static for any given
operating set. A separate priority list is thus maintained for
each node.

The scheduling function is fully replicated so that the
scheduler of each node selects tasks for every node in the
system. The selection for its own node is used to dispatch tasks
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for its own application processor. The selections for all other
nodes are used to monitor the actions of the other schedulers.

When an AP completes its currently assigned task, it passes
a branch condition (BC) value to its OC, to be used by the
schedulers in resolving or-rork dependencies. The OC imme-
diately broadcasts a task completed/started (CS) message,
containing the received BC.

To maintain Byzantine Agreeement on scheduling data, the
scheduler employs an Interactive Consistency algorithm. This
algorithm requires synchronized transmission rounds in which
each node rebroadcasts the data received in the previous
round. The number of rebroadcasts required to guarantee
resolution of the disagreement is equal to the maximum
number of simultaneous malicious faults to be tolerated [15].
MAFT incorporates one round of rebroadcast to deal with a
single malicious fault.

Synchronization of the rebroadcasts is accomplished by
defining a ‘‘subatomic’’ period whose boundaries are marked
by the simultaneous transmission of task interactive consist-
ency (TIC) messages by all nodes. An integer number of
subatomic periods constitutes one atomic period. The TIC
message contains two bytes, reflecting the scheduling activity
of all nodes during the previous subatomic period. The first
byte is a task completed (TC) byte indicating those nodes from
which a CS message was received. The second byte is a BC
byte indicating the branch condition contained in each received
CS message. After the TIC messages have been received, each
node executes an Interactive Consistency Algorithm on the
contents of the TIC messages. Thus, all nodes reach Byzantine
Agreement on the existence and content of each CS message
transmitted.

Task execution timers synchronized to the subatomic period
boundaries monitor the execution time of each task. If the
execution time of a task is shorter than a predetermined
minimum or longer than a predetermined maximum, then an
execution timer error is reported. In addition, a task sequence
error is reported whenever a node fails to execute tasks in the
sequence expected by the schedulers.

Scheduler Performance: To ensure consistency among
schedulers, all data structure modifications are based on the
agreed upon contents of TIC messages, rather than CS
messages. The *‘confirmation delay™* created by waiting for
TIC messages imposes a potential performance penaity in the
release of successor tasks. If the task precedence graph defined
by the intertask dependencies consists of a single path of
dependent tasks, then the AP’s will be idle while completions
are confirmed. However, if the graph contains parallel paths,
then independent tasks may be executed while dependencies
are resolved. In the type of real-time workloads expected for
MAFT applications, there is a significant amount of available
parallelism, indicating that high-AP utilization can be main-
tained.

Fig. 3 shows the precedence graph for part of an actual
workload currently being developed for a particular MAFT-
based flight control system [22]. This graph concurrently
processes the control laws for each of the three axes of
rotation, along with a system monitoring function. All four
paths converge by an AND-JOIN to a validity checking function,
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Fig. 4. Full six-node system standard Gantt chart.

task 9. The maximum execution time of each task, E, is listed
in units of subatomic periods.

Assume that this workload requires tripte redundancy in all
tasks except task 9. Task 9 must be executed by all nodes in
the operating set, and therefore has a variable redundancy of
N, rather than a fixed redundancy of three. Fig. 4 is a standard
Gantt chart [19] of the workload on a six-node system, with
tasks 1, 3, 5, 7, and 9 assigned to nodes 1, 2, and 3 (Group 1),
and tasks 2, 4, 6, 8, and 9 assigned to nodes 4, 5, and 6 (Group
2). The null task ¢ indicates processor time unavailable to this
precedence graph due to confirmation delay.

The Gantt chart illustrates the effect of confirmation delay
on processor utilization. During subatomic period 7, the AP’s
of nodes 4, 5, and 6 are idle because tasks 7 and 8 cannot be
released until the completion confirmation of tasks 3 and 4,
respectively. Similarly, all processors are idle during sub-
atomic periods 10 and 11 because task 9 cannot be released
until completion of tasks 7 and 8 is confirmed. This schedule
utilizes 19 of the 24 available processor periods, for an overall
processor utilization of 79 percent.

The minimum length of the subatomic period in the current
OC implementation is 400 ps. For a full eight-node system, a
minimum of seven subatomic periods is required per atomic
period, yielding a maximum control loop frequency of 357
Hz. The flight-control workload above is designed for a 500 pus
subatomic period. With this workload, the six-node system
can support an atomic period as short as 6 ms for a frequency
of 167 Hz.

Task Reconfiguration

In MAFT, task reconfiguration refers to the process of
redistributing the application workload to account for changes
in the system operating set. The overall objectives of task
reconfiguration are to provide graceful degradation of applica-
tion functions as resources are lost, and graceful restoration of
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those functions as resources are restored. The task reconfi-
guration process produces an eligibility table, indicating those
nodes to which each task may be assigned. The actual selection
and execution of tasks from the eligibility table are controlled
by the normal scheduling process at run time. A new value for
the system operating set is periodically computed by the fault
tolerator subsystem and compared to the previous operating
set. If the two sets differ, then task reconfiguration is initiated.
Byzantine Agreement is assured by an Interactive Consistency
algorithm performed on the operating set value before it is
used.

A detailed description of the task reconfiguration algorithm
is presented in [18]. Briefly, the algorithm employs three
independent processes, combining their results to determine
the eligibility of each task. Each process is path independent,
and therefore reversible. The Global Task Activation Proc-
ess activates or deactivates individual tasks to account for
changes in the overall system capability. This process is
realized by defining a set of relevant nodes and an initial
activation status (either active or inactive) for each task. When
the number of relevant nodes remaining in the operating set
reaches a predetermined threshold, the activation status of the
task is complemented. The 7ask Reallocation Process
reallocates tasks among the operating nodes of the system to
maintain the desired redundancy of each task. This process is
realized by assigning tasks to nodes in a predetermined order
of preference. If the redundancy of a task is R, then the task
will be executed by the R most preferred nodes for that task in
the current operating set. The Task-Node Status Matching
Process allows tasks to be prohibited from executing on
individual nodes based upon each node’s operational status
(i.e., included or excluded). For example, it may be desirable
to prohibit output tasks from executing on an excluded node,
assigning instead a comprehensive set of diagnostic tasks.

The ability to maintain functionality while the system
degrades depends on the assignment of the node preferences
for each task. A simple algorithm for defining preferences has
been applied to the example workload of Fig. 3. This
algorithm starts with the full six-node system, then attempts to
equalize the workload as NN, the number of nodes in the
operating set, is reduced. For each value of N, preferences are
assigned in order of decreasing task execution time. The
preference orderings produced by this algorithm are shown in
Table I. For each task i/, the table lists its execution time E; in
subatomic periods, its required redundancy R,(N), and the
system nodes in order of decreasing preference.

The effectiveness of task reconfiguration for the example
workload of Fig. 3 is shown in Table II for all values of N
from the minimal three-node system through the full six-node
system. W(N) is the total processing time required by the
workload, computed as the summation of E;R;(N) over all /.
The value £,(N) = W(N)/N is the ideal (shortest) execution
time for the workload. The value 7 is the actual execution time
observed for each operating set. The AP utilization is then
to(N)/t for each case.

Table II shows that AP utilization is never less than 70
percent for any operating set. In the minimal three-node
system, the workload requires 20 subatomic periods. Given
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TABLE 1
TASK-TO-NODE PREFERENCE ORDERING
i | E; | Ri(N) | Node Preference Order
111 3 123546
2|3 3 456132
3|4 3 123465
4|2 3 456213
5|2 3 123546
61 3 456231
7| 2 3 123654
812 3 456321
911 N 123456

TABLE II
MULTIPROCESSING EFFICIENCY
N | W(N) | t,(N) t % AP Utilization
3 54 18.00 | 20 90
4 55 13.75 | 17-18 76-81
5 56 11.20 | 15-16 70-75
6 57 9.50 12 79

the 500 us subatomic period length, the minimum atomic
period is 10 ms for a frequency of 100 Hz. Deactivation or
replacement of less critical tasks can help to maintain loop
frequency in severely degraded systems. For example, if the
maximum permissible atomic period for this application is 18
subatomic periods (9 ms), then the three-node system exceeds
its deadline by two subatomic periods. Deactivation of the
four-period long monitoring function (tasks 7 and 8) when NV
= 3, and activation of a simpler two-period long monitoring
function would permit the control functions to meet their
deadlines.

Error Handling

An OC contains error detection mechanisms which continu-
ously monitor the behavior of all nodes as revealed by their
message traffic. These errors are reported in one or more of 31
error flags contained in an ERR message. The OC also uses a
penalty counting mechanism to communicate the overall health
of the node. A base penalty count (BPC) is maintained which
indicates the current value of the accrued penalties for every
node. An incremental penalty count (IPC) is also maintained
for each node, containing a proposed penalty assessment for
the node based on error detections during the current atomic
period. Whenever an error is detected, a penalty weight,
unique to the triggered detection mechanism, is added to the
IPC. The value of the penalty weight for each detection
mechanism is set by the application designer to reflect the
relative severity of the type of error detected.

At the beginning of every atomic period, each node
broadcasts an error report (ERR) message regarding each node
in the system. The ERR message contains the accused node’s
identity, error flags, BPC, and IPC. Upon receipt of a round
of ERR messages, each node votes on the contents of the error
flag, BPC, and IPC fields. An updated BPC value is calculated
for each node by adding its voted IPC to its voted BPC value.
In this way, Byzantine Agreement on both the IPC and BPC
counts is guaranteed. (The message which contained the
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original error is the first round broadcast of an interactive
consistency algorithm; the ERR message constitutes the
rebroadcast.)

Once Byzantine Agreement is reached, the BPC value of an
accused node is updated and compared to a predefined
exclusion threshold. If the value of the BPC exceeds the
threshold, then each OC will recommend exclusion of the
accused node from the operating set. The recommendation is
made through a ‘‘next operating set’’ field contained in the
next SS message. Upon receipt of the SS messages, each node
votes on the contents of the next operating set fields in
accordance with the Interactive Consistency algorithm, and
takes the voted value as the new operating set of the system.
Thus, Byzantine Agreement is also guaranteed on the inclu-
sion or exclusion of each node in the operating set.

Reconfiguration of the application tasks may be initiated
immediately or may be delayed until the beginning of the next
master period, at the application designer’s discretion. The
excluded node is immediately prohibited from participation in
any voting or decision making processes, masking its errors
until reconfiguration is completed.

A faulty node will continue to accrue penalties, even after it
has been excluded. If the node was excluded for a transient
fault, it will subsequently exhibit correct behavior, and will
not accrue penalties. At the beginning of each master period,
the BPC of each node is decremented by a specified amount;
this amount may be zero for permanent exclusion. When the
BPC of an excluded node falls below a predetermined
readmission threshold, each OC recommends readmission via
the same sequence used to decide on exclusion.

Under normal circumstances, error detection mechanisms
will not be exercised for extended periods of time, resulting in
extremely long latency times for faults within the detection
mechanisms themselves. Therefore, a system level self-test
mechanism has been implemented in the OC. At a predeter-
mined time, one node, selected on a rotating basis, broadcasts
a stream of erroneous bits designed to exercise specific error
detection mechanisms. All nonfaulty nodes respond by broad-
casting error reports on the received errors. Addition of the
IPC to the BPC is suspended to prevent exclusion of the
originating node. Any node containing a faulty error detection
mechanism is identified by the fact that its error report differs
from the consensus. Using the consensus as the basis for
correctness decouples the system self-test mechanism from the
actual contents of the erroneous message stream. Thus, an
error in the test messages generated by a specific source node
does not affect the accuracy of the diagnosis. Rotation of
source node duties ensures full test converage as long as at
least one node is capable of correctly generating the self-test
message stream.

IV. SUMMARY

The MAFT system has been designed to provide high
performance and extreme reliability across a broad spectrum
of real-time applications. To satisfy these goals, MAFT relies
on the functional and physical partitioning of system executive
functions from application functions. The executive functions
are performed by hardware-intensive data-driven operations
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controllers (OC) while application functions are assigned to
general-purpose application processors (AP).

MAFT meets or exceeds its stated performance objectives
by providing control loop frequencies in excess of 350 Hz, and
bus bandwidths of about one MBPS. Since MAFT supports
multiprocessing and permits a wide choice of AP’s, the
throughput of 5.5 MIPS is not difficult to attain. MAFT
employs Interactive Consistency and Convergent Voting
algorithms to maintain Byzantine Agreement and Approximate
Agreement, respectively, on critical system and application
parameters. Specific MAFT features such as on-the-fly voting
and deviance checking support the use of dissimilar hardware
and software in the system. Two different prototypes have
been implemented and are currently undergoing testing.
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