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Abstract
As computer and software technologies have

advanced, the approach of Integrated Modular
Avionics (IMA) has emerged in the field of
avionics systems.  The IMA approach can
dramatically reduce production and maintenance
costs and increase reliability of these safety-critical
real time systems. The IMA hardware and
foundation software must be able to provide
guarantees to the application software so that the
real-time constraints of all applications are
simultaneously satisfied.  In addition, each
application must be protected from interference by
other applications and the operating system
software must itself be protected while physically
sharing resources such as processors and
communication hardware and busses.  In other
words, an IMA implementation requires that the
concepts of spatial and temporal partitioning are
provided and guaranteed.

This paper introduces a scheduling tool and its
algorithms that can be used to solve the
fundamental temporal partitioning problems
together with implementation related practical
constraints.
     Based on the two-level scheduling hierarchy
architecture of ARINC IMA standards, we model
an IMA system composed of multiple partition
servers and channel servers.  A partition server
models a protected application that may be
composed of multiple concurrent tasks.  A channel
server provides temporally and spatially protected
message transmission among applications.  The
ultimate objective of the tool is to provide schedules
for both tasks and messages that provide for robust
temporal partitioning.

1 Introduction
The concept of Integrated Modular Avionics

(IMA) is one of the major trends in building current
state-of-the-art avionics systems. The advancement
of computer and software technologies have made it
possible to deploy this new concept in real avionics
systems. Traditional avionics architectures have
been built with a federated method, which lead to
numerous equipment boxes, one for each
subsystem. This federated approach is a convenient
and stand-alone reliable, but it is very expensive
solution. In IMA architecture, all these formerly
separated sub-systems can be put into one
multiprocessor system while sharing computing
resources, power, hardware communication
resources, software libraries, tools, displays, and
information like data bases.

Since IMA approach allows multiple
applications of different critical levels share
common computing resources, it is important to
keep individual application away from potential
interference. Both temporal and spatial partitioning
principles are the key ideas to protect integrated
applications and system resources. Temporal
partitioning guarantees that an application or
communication server has temporal exclusive
access to its pre-allocated resources. With
guaranteed pre-scheduled temporal partitioning, an
application can meet their timing requirements.
Spatial partitioning guarantees that an application
has exclusive control over its own data and state
information. With spatial partitioning, an
application can be protected from any erroneous
behaviors of other applications while sharing same
physical resources.

The main concern of the paper is temporal
partitioning for which we must schedule shared
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resources while guaranteeing timing constraints of
all applications. Spatial partitioning can be
implemented by relatively easier mechanism such
as memory management unit of the processor.

Following ARINC IMA standards [5,6,7], we
modeled IMA system such that it is composed of a
number of communicative applications on
multiprocessors that are connected by fault tolerant
time division multiplexing (TDM) bus. In order to
schedule applications that share processors and fault
tolerant TDM bus, we developed two-level
scheduling algorithm [1,2,3]. The approach is based
on a fixed-priority and cyclic two-level scheduling
algorithm for tasks and messages. In the processor
execution model, all tasks are assigned to the
specific partition server and allocated feasible fixed
priorities within a partition server. A task is
preemptible by higher priority tasks in the same
partition. Then partitions are scheduled according to
a cyclic time-based manner while guaranteeing
distance constraint. Thus, the execution time for
each partition is pre-allocated and no temporal
interference can exist between partitions. In the case
of message scheduling, each message is assigned to
shared channel server and also preemptible by
higher priority messages of the same channel.
Channels, then, are allocated with a sequence of
slots every communication frame and have enough
bandwidth to facilitate message communication.

Considering real systems, above fundamental
scheduling algorithm is not sufficient to solve a
variety of practical constraints. So we have extract l
six additional practical constraints from real
hardware platform which is also in the development
stage. To solve these practical constraints, we have
developed corresponding scheduling algorithm
modules that can be dynamically plug into basic
two-level scheduling algorithm. These six
constraints are replicated partition scheduling,
incremental changing, time tick based scheduling,
fixed bus major frame size scheduling, fixed
message size scheduling, and fault tolerant cyclic
allocation for clock synchronization.

We have developed a scheduling tool on
Windows NT platform with user-friendly graphical
interface. The tool provides fundamental two-level
scheduling algorithm and six additional algorithms
for solving practical constraints.

In the following, we discuss general IMA
system architecture and modeling efforts in section

2 and introduce a scheduling tool in section 3. We
describe basic two-level scheduling algorithm in
section 4.  We briefly discuss scheduling algorithms
for six additional constraints in section 5.

2 IMA System Architecture &Model
ARINC is a standardization body in the area of

avionics systems. They publish a series of
recommendations for IMA such as ARINC 651,
ARINC 653, and ARINC 659, etc. Therefore, it is
reasonable to follow their standards to build
scheduling model of the IMA system. According to
the standards, the IMA system is composed of
several computer cabinets that are interconnected
by ARINC 629 global data bus. Inside the cabinet,
they use ARINC 659, fault tolerant time division
multiplexing bus, to interconnect hardware modules
such as processing, I/O, and memory modules. In
this paper, we only concentrate on intra-cabinet
scheduling. We depict the model of IMA intra-
cabinet architecture in Figure 1.
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Figure 1. IMA intra-cabinet architecture model

Figure 1-(a) shows the IMA intra-cabinet
architecture. Based on Figure 1-(a), we have built
IMA scheduling model as shown in Figure 1-(b). In
the heart of each processor and I/O module, there is
a kernel executive that is responsible for scheduling
multiple partitions, denoted by Pi, while
guaranteeing temporal and spatial partitioning. A
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partition is an independent application that is
composed of multiple concurrent tasks. Usually in
each partition, there is a partition executive which
schedules its own tasks according to their
scheduling policy, fixed priority based preemptive
scheduling. The bus uses table driven proportional
access (TDPA) protocol to ensure temporal and
spatial partitioning concepts. It implies that every
bus interface unit (BIU) has a transmit/receive table
with which the unit can recognize the exact timing
of transmission/reception operation and the size of
messages.

We show two examples of IMA system.
Boeing 777 has equipped with Honeywell�s
AIMS(Airplane Information Management System)
under the flight deck. An AIMS consists two
integrated avionics cabinets, one is primary and the
other is secondary for fault tolerance. In each
cabinet, there are four processing modules and four
I/O modules interconnected by TDM SAFEbus
(commercial version of ARINC659 bus). They
integrate primary airplane functions such as flight
management, displays, navigation, central
maintenance, airplane condition monitoring, flight
deck communication, thrust management, engine
data interface, digital flight data processing, and
data conversion gateway into only one cabinet.
Supported by strong partitioning concepts, critical
applications such as thrust management can not be
interfered by non-critical central maintenance
application. Another example is Honeywell�s
Integrated Hazard Avoidance System (IHAS) which
will integrate their Enhanced Ground Proximity
Warning System (EGPWS), Traffic Alert and
Collision Avoidance System (TCAS) and Weather
Radar System in a single cabinet.

In our task model, each task is composed of
two consecutive jobs, processor execution and
message transmission. To schedule tasks
concurrently, including both processor execution
and message transmission, we decompose the
system into two scheduling entities, partition and
channel. A partition represents an application
composed of its interacting tasks. A channel then
serves the set of messages originated from a
partition.   Therefore, in terms of processor
scheduling, there are two levels of servers, a cyclic
processor scheduler and several priority driven
partition server in each processor and I/O module.
The cyclic processor scheduler corresponds to

kernel executive and priority driven partition server
resides in partition executive of each partition. In
the same way, there are two levels of servers, cyclic
bus scheduler and priority driven channel server in
viewpoint of bus scheduling. Within a partition, a
set of channel servers serve communication
requests from tasks that share a common channel
server. There is only one cyclic bus server in a
cabinet. Multiple channel servers can exist in each
processor and I/O module.

The two-level scheduling is accomplished by
first finding feasible assignment of fixed-priorities
to all tasks and messages within its own partition
server and channel server respectively and
concurrently searching for the optimal number of
channel servers together with a feasible assignment
of messages to channel servers.  Second, it finds
feasible capacities for the partition and channel
servers and computes a cyclic schedule while
guaranteeing distance constraints.

Each task has a period (Tk), worst-case
execution time (Ck), deadline (Dk), and message
transmission size (Mk) as input parameters. It is also
required to find optimal split of Dk into message
deadline (MDk) and computation deadline (CDk)
while strong partitioning scheduling. We show the
abstract task model in Figure 2. The decomposition
of deadline influences capacity requirements for
tasks and messages. We can observe a tradeoff that
a loose message deadline implies a less amount of
bandwidth, but the task has to meet a much tighter
computation deadline.

Task period Tk

Ck

Message deadline MDkComputation deadline CDk

Task deadline Dk

Mk

Figure 2. Abstract Task Model

3 Scheduling Tool Suite
We have developed GUI-based integrated

strong partitioning scheduling tool which
implements all previously described scheduling
algorithms for IMA system on Windows NT
platform. Figure 3. shows the role of the tool in
developing IMA system. For guaranteeing timing
requirements of all integrated applications in the
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IMA system, system integrators need information
such as partition server cyclic scheduling table in
each processor, task priority assignment in each
partition server, message to channel server
assignment, channel server cyclic scheduling table,
and message priority assignment in each channel
server.  The strong partitioning scheduling tool
provides these feasible schedules in system
integration stage. Practically, these scheduled
results are put into such as schedule table of kernel
executive, and transmission/reception table of bus
interface unit in Figure 1.
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Figure 4. The structure of  scheduling tool

The tool provides convenient user interface
functions such as managing project, editing files,
performing scheduling algorithms, and browsing
scheduling results. Figure 4. shows the simplified

structure of the tool which composed of three main
components, windows based configuration process,
command-line based integrated scheduler, and
graphical viewer. The windows based
configuration-process-module is a top level user
interaction environment. It provides graphical user
interface with which user can configure the target
system, input application information and
scheduling options. In order to track the evolution
of the system, it also provides project and history
management. Figure 5. shows the snapshot of  the
system configuration dialog box with top-level
screen as a background. The command-line based
integrated scheduler is responsible to execute our
scheduling algorithms with given configuration and
inputs either in command line or in integrated
environment. A detailed result of scheduling is
stored in *.prn file. Additionally, user can view the
scheduled timing diagram of processor and bus
allocation with graphical viewer.

Figure 5. System and scheduling parameters
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Figure 3. Usage of scheduling tool in avionics system design
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The scheduling algorithms for solving six
additional practical constraints are implemented as
plug-in modules of the basic two-level scheduling
algorithm. So any combination of six constraints
can be easily applied to the application. The basic
two-level scheduling algorithm and six additional
algorithms will be explained in next sections. Also
more detailed information can be found in [2].

4 Basic Two-Level Scheduling
Algorithm
The objective of the basic two-level scheduling

algorithm is to find feasible cyclic schedules for
partition and channel servers. With proper capacity
allocation and frequent invocation at each server,
the combined delays of task execution and message
transmission are bounded by the task deadlines. In
Figure 6, we show the overall algorithm which first
applies a heuristic deadline decomposition to divide
the problem into two parts: partition scheduling and
channel scheduling. If either one cannot be done
successfully, the approach iterates with a modified
deadline decomposition.

Comput. and message
deadline decomposition

Determine partition
capacities and cycles

Channel server
initialization and

combining

Determine channel
capacities and cycles

Communication slot
allocation

Processor
cyclic scheduling

fail

cannot
combine

fail

succeed

succeed

Integrated schedule

Figure 6. Basic Two-level Scheduling Algorithm

First we consider scheduling periodic partition
server, Sk, which schedules the tasks of partition Pk
according to a fixed priority preemptive scheduling
algorithm. At the system level, the partition server
Sk is cyclically scheduled with a fixed partition
cycle, ηk. For every partition cycle, the server can
execute the task in partition Pk during an interval of

αkηk where αk ≤ 1. For the remaining interval of (1-
αk)ηk, the server is blocked. It is our objective to
find a pair of parameters αk and ηk such that the
tasks of Pk meet their deadlines when Pk is running
by the server Sk.

Suppose that there are n tasks in partition
server Sk listed in priority order such that τ1 < τ2 <
τ3 < � < τn where τ1 has the highest priority and τn
the lowest. The highest priority is given to the task
with shortest computation deadline. In order to
evaluate the schedulability of the partition server,
Sk, we may consider that Sk is executed at a
dedicated processor of capacity αk. Based on the
necessary and sufficient condition of schedulability
in deadline based rate monotonic analysis, task τi is
schedulable if there exists a t ∈ Hi = {CDi ∪ lTj |
j=1,2,�,i-1; l=1,2,�, CDi/Tj }such that:
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The expression Wi(αk, t) indicates the worst
cumulative execution time demand on the processor
made by the tasks with a priority higher than or
equal to τi during the interval [0,t]. We now define
Bi(αk) = max t ∈ Hi {t � Wi(αk, t)} and B0(αk) = min
i=1,2,..n Bi(αk). Note that, when τi is schedulable,
Bi(αk) represent the total period in the interval [0, t]
that the processor is not running any tasks with a
priority higher than or equal to that of τi in the
partition server.  It is equivalent to the level-i
inactivity period in the interval [0, t].

  By comparing the task executions at server Sk

and at a dedicated processor of capacity αk, we can
obtain the following theorem.

 Theorem 1. The partition Pk is schedulable at
server Sk if Pk is schedulable at a dedicated
processor of capacity αk, and ηk ≤ B0(αk)/(1-αk)
 
(Proof) reference [1].

Channel server, Gk, serves its allocated
messages according to a fixed priority preemptive
scheduling methods. At the system level, the
channel server Gk will be allocated certain amounts
of slots in a fixed slot period. We denote this period
as the distance, µk. For every distance, the channel
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server can provide bandwidth to the messages in
channel server Gk by total number of slots of
βkµk where βk ≤ 1. For the remaining slots of (1-
βk)µk, the server is blocked. With similar approach
to processor scheduling, we can find a pair of
parameters βk and µk such that the messages meet
their deadlines.

The heuristic deadline decomposition
algorithm tries to decompose task deadline into
computation and message deadline by searching
sub-optimal value f for all tasks in following
equation.

Message Deadline, f
FC

F
DMD

kk

k
kk )(

+
=

Computation Deadline, kkk MDDCD −=

The channel combining algorithm tries to
assign and combine messages for channel servers to
reduce bandwidth requirement.

As a final step, the cyclic scheduling algorithm
allocates processor and bus capacities to all
partition and channel servers. Since processor and
bus cyclic scheduling are similar, we only show the
algorithm for bus cyclic scheduling. Let feasible
bus bandwidth capacity allocation set for all
channel servers be (β1, µ1), (β2, µ2), � , (βn,µn). It is
already sorted  by non-decreasing order of µk. If µi

is equal to µj where i < j, then βi is less than or
equal to βj.  Using distance constraint scheduler, the
set will be transformed to harmonic set in which mi
divides mj where i < j. Given a base partition cycle
µ, find a period mi for each µi that satisfies

mi = µ * 2j ≤ µi < µ * 2 j+1 = 2*mi,
for some integer j ≥0, i.e. mi = µ * 2 log(µi/µ).

  To find optimal base µ in the sense of
utilization, it tries all candidates of µ, µ1/2 < µ ≤ µ1,
and computes total bandwidth requirement ψ(µ). To
obtain ψ(µ), it first transforms set of µi to set of mi

based on corresponding µ and then find least
capacity requirement, h

kβ , for channel cycle mi

from channel cycle vs. bus capacity graph. Then we
can compute actual bandwidth requirement ψ(µ) by
summing all h

kβ . We choose µ which has minimum
ψ(µ). Finally with optimal µ, we can obtain
harmonic sets of ),( k

h
k mβ .

Figure 7. shows the fixed cyclic bus slot
allocation example guaranteeing distance constraint

for final harmonic set, ),( k
h
k mβ , of A(0.1,10),

B(0.2,10), C(0.1,20), D(0.2,20), E(0.1,40), and
F(0.3,40). We use maximum channel cycle 40 as a
major frame size. This bus slot allocator is also
easily implemented by priority based scheduler
either on-line or off-line.

A B B C C D D D D E A B B E E E F F F F A B B C C D D D D F A B B F F F F F F F

10 10 10 10

20 20

40

Figure 7. Example of cyclic scheduling

5 Solving Practical Constraints
To achieve reliability and ease of maintenance

or due to the limit of the hardware and software, we
face practical constraints while scheduling the
integrated real time system. In this section, we
describe these constraints and show how to solve
these problems. Due to the space limits, we briefly
discuss the topics. More detailed information can be
found in [2].

Replicated Partition Scheduling - To achieve
fault tolerance, safety-critical real time systems
usually adopt redundancy mechanism by replicating
application on multiple processors. It is required
that the replicated partition instances in the same
group must be guaranteed to meet the same real
time constraints while executing on different
processors. In the processor execution model, each
replicated partition instance may be scheduled
differently because they can be run in different node
configuration. However, in the case of channel
scheduling, all instances must be scheduled same
because they have to share one global channel
server.

The overall scheduling algorithm takes two
steps, replicated partition scheduling and global
scheduling. Since replicated partitions are shared by
multiple nodes, they have to be scheduled before
non-replicated partition scheduling.

Incremental Changing Scheduling - Since
the expected life-time of aircraft is several tens of
years, it is highly expected to attach, detach and
modify the application components of an existent
system in the lifetime of the system. In the current
practice and FAA requirement, validation and
certification processes for the whole system must be



1.C.2.-7

done after each change. Incremental changing
algorithms are to seek a minimal modification of
the previous schedule when a subsystem is changed.
According to the implemented algorithms, we just
need to re-allocate the resources for either modified
partitions or new partitions only. We still can re-use
the original feasible schedule for unaffected
partition and channel servers such that they can
have unchanged processor capacity, channel
allocation, channel bandwidth, major and minor
periods. Thus, we can avoid significant system re-
design efforts and reduce the costs for re-
certification.

Time Tick Based Scheduling � The basic
two-level scheduling algorithm assumes high-
precision real clock driven method for processor
capacity allocation. It means that kernel executive
should have capability to cyclic-schedule partitions
with period and execution time of real number. For
example, the basic two-level scheduling algorithm
is allowed to allocate execution time 2.357 (ms) in
the period 10 (ms) for a partition. But, most
practical systems like Honeywell�s GPACS - our
target system, uses time tick method with fixed
resolution to allocate processor time to each
partition. Similar to message scheduling algorithm
that uses fixed slot as a scheduling unit, processor
scheduling algorithm must be modified to allocate
integral number of time ticks to each partition. The
disadvantage of time tick based scheduling is that
processor utilization is poorer than high-precision
real clock driven method because it has to allocate
fixed size time ticks, a result of ceiling real number.

Fixed Bus Major Frame Size Scheduling - In
original scheduling algorithm, it tries to find
optimal major frame size for TDM bus with given
channel bandwidth requirement. But, in real world,
it is also needed to schedule channels with fixed
major frame size. This is because major frame size
may be tightly coupled to bus hardware design in
some situation. In fixed bus major frame size
scheduling, it is limited to choose the base minor
frame size, denoted as µ in previous section, in
cyclic scheduling. The algorithm requires that the
fixed major frame size must be multiples of the
base minor frame size.

Fixed Message Size Scheduling - In original
message scheduling algorithm, we assume that the
unit of TDM time slot (32bit data in GPACS) is a
preemption unit for message scheduling. It means
that a higher priority message does not wait longer
than one time slot unit. In general, the smaller
preemption unit, the higher schedulability we can
achieve. But, in real situation, it is demanded that
the size of preemption unit used by message
scheduler should be bigger enough to compensate
the slower speed of the scheduler than that of TDM
bus. It is also improper to permit unlimited size of
preemption unit because it can cause higher priority
message should wait the completion of lower
priority message too long.

Fixed message size scheduling algorithm will
be given parameter MSIZE, fixed message size,
additionally. The difference from original
schedulability condition is caused from that the
higher priority message should wait for MSIZE
time at maximum to allow former dispatched lower
priority message be transmitted.

Fault Tolerant Cyclic Allocation For Clock
Synchronization � ARINC 659 fault tolerant TDM
bus is designed for safety critical real time systems
that require very high reliability. So it is equipped
with four redundant data serial buses and four clock
lines for fault tolerance. And clock synchronization
is achieved by bit- and frame-level synchronization
messages in a distributed way. In the tool, we
implemented fault tolerant cyclic allocation
algorithm that can be used in simpler distributed
clock synchronization environment.

We assume that in our target distributed clock
synchronization environment, when one of bus
controllers gets bus mastership and transmits either
real or idle data, it also distributes reference clock
to all other bus controllers on the same bus
simultaneously. Then other bus controllers try to
synchronize their own clock to current reference
clock. This approach might cause global system
clock failure if current bus master controller goes to
fail for longer than certain threshold time. Our new
algorithm ensures that bus master can not be
allocated longer than this threshold. Also the failed
node is prevented from re-gaining bus mastership in
another pre-determined threshold time.

We use the two parameters to specify the
reliability of distributed clock synchronization
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mechanism and introduce Idle Clock
Synchronization Channel Server (ICSCS). Every
bus controller in a node has at most one ICSCS.
The two parameters are MaxH and MinW that are
decided by the reliability of underlying hardware.
The unit of two parameters is TDM time slot.  The
Maximum Bus Hold Time, MaxH, indicates that
clock synchronization mechanism can maintain
synchronization for a MaxH time during the failure
of reference clock. So the algorithm should
guarantee that every bus controller should not
monopolize the bus more than MaxH number of
consecutive slots. The Minimum Bus Wait Time,
MinW, means that every bus controller should wait
at least MinW time to get back the bus mastership
after yielding their bus mastership to others. The
function of ICSCS is to distribute reference clock to
the bus with idle data when there is no scheduled
bus activity at that time interval.

6 Conclusion
We have developed scheduling tool for

Integrated Modular Avionics Systems that require
implementation of strong partitioning concepts. We
modeled the system based on integrated avionics
standard, ARINC IMA architecture. We have
developed the two-level hierarchical scheduling,
lower cyclic scheduling satisfying distance
constraint to schedule partition and channel servers
and higher priority driven scheduling to schedule
tasks and messages within each server. The
contribution of the algorithm is that it can
efficiently distribute processor and bus capacity to
all applications properly so that their timing
constraints are guaranteed while sharing resources.
For the purpose of supporting fault tolerance, we
added scheduling algorithms for replicated
partitions and fault tolerant cyclic allocation for
clock synchronization. Added incremental changing
algorithms are useful for efficient lifetime
maintenance of the IMA system. The tool also
solves the problems due to hardware and software
limits using time tick based scheduling, fixed bus
major frame size scheduling, and fixed message
size scheduling.
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