The wHOLe System

Mark E Woodcock

Department of Defense, Fort Meade MD USA
Department of Computer Science and Electrical Engineering, UMBC, USA
woodcock@cs.umbc.edu

Abstract. A theorem-proving system derived from Higher Order Logic
(HOL) is described. The system is designed to support the verification
of code written in its own implementation language (SML/NJ), and to
allow code which is proven to preserve equality of hol_terms to be used
to extend the system. The extension is shown to be theoretically conser-
vative, and the implementation to be reliable. It is hoped that significant
efficiency gains can be realized employing this technique (Computational
Reflection).

1 SYSTEM SOUNDNESS

1.1 Impossible Ideal

The ideal of formal logic correctness is known as Hilbert’s programme. Hilbert
hoped to devise a logical engine which could: 1) solve any logical problem, and 2)
be used to demonstrate the soundness of the engine itself. Goedel’s incomplete-
ness theorems proved that the programme was unobtainable in both respects.
The theorems established that:

1) for any interesting logic (i.e. one that includes at least arithmetic over the
integers) there are statements in the logic that are true, but can not be proved
2) no formal logic is sufficiently powerful to establish its own soundness.

This induces a temptation to justify the soundness of a desired logic by us-
ing some more powerful logic. Unfortunately, this merely pushes the problem off,
since there would remain an obligation to demonstrate that the ” more powerful”
logic was itself sound. Eventually, one of these logics would have to be justified
without resort to a formal proof. Clearly, some level of informal analysis is un-
avoidable in the pursuit of highly trustworthy systems.

In practice, the more powerful logic is one such as set theory that has been
accepted to be sound through (informal) community review. This logic is then
used to justify the soundness of the theorem proving system in a non-automated
proof!.

! Automation is not required for formality, but it does provide for more reliable check-
ing of details.



1.2 Practical Goal

Full (formal, automated or neither) analysis of a theorem proving system, how-
ever, would be a decidedly painful experience. Such systems are typically large,
and include many features which have little relation to the soundness of the
system. Consequently, the practical ideal which has developed in the community
is of a system which is constructed in two main layers: 1) a small soundness
relevant core, and 2) the rest of the system features wrapped around the core.
This reduces the scale of the target of informal analysis to a manageable size.

A second possible benefit to a manage-ably-sized (for non-automated analy-
sis) core is that the hand proof could be published and be vetted by the com-
munity at large. Unless the core itself is reasonably small, it is unlikely that the
soundness demonstration would be broadly accessible (even to experts in the
field).

A third benefit to a system with a small core of primitives is that the system
could be designed to output the primitive proof steps, allowing a complete sep-
aration between the proof discovery and proof checking aspects of the system.
This would provide compelling justification that only the (checking) core of the
system would require informal analysis.

Even better, once such a checker had been built and vetted by the community
at large, any proposition which had its proof checked by the primitive checker
would have been effectively vetted by the community as well. This scheme would
maximize the leverage which could be obtained from the investment needed to
achieve the second benefit.

1.3 Plan for Realization

Fortunately, HOL is a system designed with this ideal in mind. The logic itself
is based on a few axioms, rules of inference and principles of definition. The
soundness of this logic is justified by a proof sketch, in chapters 15 and 16 of
the HOL documentation[1]. Unfortunately, the system as originally implemented
was not as simple or direct as the logic design. Many of the inference rules (for
which justifications in terms of the primitive rules are well-documented) were
implemented as primitives for efficiency reasons.

This was one of the key motivators for the use of the HOL Light (HOLL)
[2] system as the basis of this effort. Only those things which are documented
as primitives are actually implemented as primitives. The implementation of the
core of the system (except for two rules which are presented later, merely to make
the presentation flow smoothly) requires only about 1200 lines of ML code—most
of the first 500 or so are just simple library functions 2. The extension of the
original proof sketch (for the revised core) of correctness is documented for this
system [3].

? wHOLe includes another approximately 400 lines of library code designed to facilitate
the translation from CAML to SML



2 EXTENSION

The system presented here is layered on top of the HOLL system, so we will
only present justifications for the soundness of the extensions to HOLL. We
have extended the core with only two rules:

1. a primitive rule of inference which constructs new theorems by applying one
of a set of ”certified” pieces of ML code to an existing theorem

fun USE_PR n (Sequent(asl,c)) =
if (can (assoc n) (!valid_rules))
then (Sequent (asl, (assoc n (!valid_rules)) c))
else raise Failure "No rule for ""n”" defined.";

2. an extension rule which checks that proposed pieces of ML code have the
desired property, and if so, adds the code to the ”certified” set

fun mk_proof_rule name text prf =

let val abs_fun = hol_parse text
val oper = X ("APPexp_e (""abs_fun~")")
val rando = X "(PARatexp_e (x:exp_e))"
val rhs = Comb(oper,rando)
val x = Var("x",Tyapp("exp_e",[1))

val (Comb (Const ("SOME_My:A->A option_My"),"result:A")) =

(mk_comb (X "compute_exp s_i E’_0",rhs))
val () = mk_comb(X "FST: (val_pack#state)->val_pack",

val goal = mk_forall(x, (mk_eq(x,result)))
val func = EVAL.eval text
in
(PROVE(goal,prf) handle Failure _ =>
raise Failure "Function not truth preserving!";
if (can (assoc name) (!valid_rules))
then raise Failure "Rule Name already in Use"
else (valid_rules := (name,func)::(!valid_rules);
(rule_just := (name,prf)::(!rule_just));
TextI0.output(TextID.stdOut,
"New proof rule "“name”" has been accepted\n")))
end;

(¢‘X’? is the function which parses strings into hol_terms)

Clearly, these two rules are closely related in their impact on soundness, since
the first rule merely applies the code ”certified” by the second rule. They are
built on top of two simple list structures which store the rules which have been
certified and their proofs:

val valid_rules = ref []: (string*(term->term)) list ref

val rule_just = ref []: (string*tactic) list ref



2.1 Application Rule

Assuming we are able to satisfactorily establish that the extension rule only adds
code/proofs to these lists if the code is a sound extension, then the application
of the ”USE_PR” rule is trivially (theoretically) sound. It does, however, raise
two interesting related issues: misuse of the rule structure by the user, and the
ability of the resulting system to support an isolated primitive proof checker.

Misuse Two sorts of misuse should be considered: accidental and malicious mis-
use. We consider the risks of accidental misuse extremely low. The user interface
(essentially the traditional HOL interface) to the system is entirely via function
applications; users would have no motivation to perform assignments on vari-
ables which they have not defined (since, even if they determined the need to
use a “ref” variable to manage their work, they would reasonably expect assign-
ment to an undefined variable to fail). Even if a user were to freshly define the
variable, static scoping would prevent a conflict with the critical structure.

Malicious misuse, on the other hand, would be easily accomplished. As the
system is currently implemented, a brief reading of the code (or this document)
would provide the name of the key structure, improper code could be added by
simple assignment. Even so, we consider the risk of (successful) malicious use
very low:

1. A completed proof is not (currently) an economic commodity; any gain that
is achievable in this way is unlikely to be sufficient motivation for the risk of
personal embarrassment.

2. Checking that such a deception had been attempted would be quite trivial:
any competent reviewer (who examined the proof closely) would note it, or
a simple automated scan (e.g. grep) would be more than adequate to detect
it.

3. The current implementation is essentially designed to be in ”debugging”
mode, since its primary purpose is to support this research project—two
different techniques could be employed to dramatically decrease the feasi-
bility of malicious misuse, if a production implementation were developed.
The first is the straightforward application of the module feature in SML.
By placing the basic system inside a module and only allowing the primitive
rules to be publicly accessible (thereby hiding the key structures), it would
force the malicious user to rewrite the system to achieve such a deception.

Of course, there are a wide variety of ways that a user could get a doctored
(rewritten) system to appear to accept bogus proofs—this feature would be just
one more target for this attack. Fortunately, the proposal for a split prover
(primitive checker/proof assistant) would provide a more than adequate defense
for this type of attack (and it’s the next issue to be considered).

The Split Prover Finding techniques for creating such a system is still an active
research area, recent work includes a proposal for a implementation of such
system based on HOL. No effort, consequently, was made to solve a second open



problem or apply such techniques to this system. We claim, though, that these
extensions would make the implementation of such techniques no more difficult.
The essential difficulty in the creation of a such a system is reducing an
arbitrary proof to one that only makes reference to the primitive rules. Any
invocation of one of the code rules by "USE_PR” could be be replaced by in-
stantiating the theorem (V t.t = f t) with the conclusion of the current goal,
and looking up the proof of this theorem in the second data structure (using the
name of the code as an index). Having the precise theorem and its proof should
not only be sufficient, but more than is usually available to such a tool. So, while
some simple coding may be needed to handle these rules, it is pretty trivial.

2.2 The Extension Rule

This places the obligation to meet the key condition for soundness (i.e. is the
justification for these pieces of code sufficient to allow their use) squarely on the
second rule. The rule, allowing for three assumptions, has a very straightforward
justification. It requires that there is a proof that for any possible HOL term, the
result of applying the ML code to that term is equivalent to that term. In any
situation where the code rule would be used, a completely ordinary HOL proof is
also available. Instead of applying the code rule, the system could instantiate the
already proved theorem, and simply rewrite the conclusion of the goal. Since an
equivalent primitive proof exists®, the extension rule is a conservative extension.

The three assumptions that must be justified are: 1) that the parser correctly
converts ML code into the appropriate internal form (abstract syntax) 2) the
evaluation rules correctly define the operation of SML and 3) the user submits a
function object which was created by the system evaluating the string (”text”)
submitted at the same time.

Parser Fortunately, the construction of a parser was performed with the as-
sistance of automated tools (ML-Lex and ML-Yacc, provided in the SML/NJ
distribution). The front end of the parser merely required the straight-forward
encoding of the syntax from [5], while the back end (”code generation” of the
abstract syntax) is an encoding drawn directly from the holML representation
of the formal definition [7]. The tools helped identify a number of minor errors.

Formal Definition—FEvaluation Rules The evaluation rules are drawn from HOL-
SML, Myra VanInwegen’s [7] encoding of the formal definition of SML [5]. HOL-
SML includes only the Core of SML, and completely eliminates any of the rules
on equality types, real numbers and input/output. A number of the differences
between HOL-SML and Core SML ’90 (e.g. value restriction versus weak typing,

3 it may be necessary to reduce subordinate code rule applications to primitives to
construct an actual primitive proof



restrictions on the use of the “ref” constructor) needed to make proofs about
the language tenable have been incorporated into the SML 97 definition®.

We have made two small changes to the definition: extending the default
SML base environment with the types and constructors for modeling HOL terms
(since we want to write SML code which modifies HOL terms); and coercing the
variables in two of the pattern phrases into longvars to facilitate parsing. We
have only converted the evaluation rule sections of the HOL-SML to the wHOLe
system, the elaboration rules, as well as the proof type preservation have not
been addressed (work on the determinism proof is underway).

The effort that went into those proofs, however, gives significant credibility
to the accuracy of the evaluation rules. Not only was this formal, automated
analysis of the SML definition able to achieve interesting results, but had influ-
ence on the development of the language. Conversion of the HOL-SML rules for
the wHOLe system merely required some syntactic modifications (double quoted
strings to represent HOL terms instead of single-quoted, a few more parenthesis
to clarify scope of operators)—the difficult part was converting the support-
ing packages (which exposed numerous distinctions between the HOL ’90 and
HOLL/wHOLe systems).

The String and the Object While it is trivially easy (using a cut and paste editor)
for the user to correctly submit matching text and executable objects, we would
prefer to relieve the user of this obligation (and close a pretty large soundness
hole). We expect that more careful study of the SML/NJ system will identify a
mechanism for handling this detail.

3 USE OF THE SYSTEM

3.1 Basics

Briefly stated, wHOLe is a derivative of the original HOL system. Except for the
implementation language, and the modifications described above, it is HOLL.
The canonical features of such a system are: that interaction is via a dialect of
ML (literally the Meta Language), that backward proof by tactics is the primary
metaphor (although other schemes are supported), and the HOL object language
(which is Higher Order Logic). Much more detail is available in [1,4].

It is important to note, however, that HOLL was designed to be a refer-
ence version of HOL—the foundation for future research which could feed into
system as it developed. HOLL does not include features like libraries or theory
management & storage which would be preferred in a production system.

4 Tronically, there was some trepidation when SML/NJ 93 implementation inadequa-
cies forced this project to upgrade to SML/NJ 110 (and therefore, SML '97)—fearing
that it would cause more language inconsistencies.



3.2 Extension

A helper function (called prove_SML) has been defined which takes a string (the
text of some SML code), and invokes the HOL subgoal package on the theorem
(Vt.t = ft)(wherefisthe SML code). At this point, the user can interactively
apply tactics in the usual way, attempting to reduce the goal to statements that
are known to be true. The user is obliged to keep careful track of the tactics
employed to prove the goal, so that a single tactic which proves the goal can
be constructed (e.g. “tacticl THEN tactic2” is a single tactic which first applies
tacticl, then applies tactic2 to the result).

The user must also compute the executable object equivalent to the text of
their function. This can be done by using

this “val” declaration: val my_sml_function = The Text of the SML Code;
when the code looks like this: “The Text of the SML Code”

It will create an executable version of the object, and attach to it the name
“my_sml_function”. We recommend that this be done before the proof of cor-
rectness, since we find little value in proving properties of invalid SML code.

We anticipate that proofs of the kind we require will be greatly facilitated by
the construction of a “symbolic evaluator” [6] which will generate the tactics to
do the obvious case-splitting and rewriting for the analysis of SML code. We have
deliberately put off the design of such a tool, however, until we have adequate
experience performing such proofs.

4 DISCUSSION

4.1 How it Applies to Practice

Efficiency One of the long-time concerns with theorem proving tools is their
speed. Because this tool provides a way to replace proof strategies based on
primitive invocations with more efficient direct term manipulation, it should
allow for a significant, although probably linear, speed-up.

Paradigm Unification An issue which has been pushed to the forefront by the
development of algorithmic methods (e.g. model-checkers), is how to merge anal-
ysis tools of varying degrees of formal basis into a single methodology. This tool
lays out the path to the ultimate solution to this dilemma: code verification that
such an algorithm is truth preserving. While significant improvements to the
support for and understanding of the method will be needed before such a proof
could be attempted, at least the foundation has been laid.

Life-Cycle and Support The ability of SML/NJ 110 to import and run “C” code
(via the CINTERFACE) offers a near-term solution for combining tools and a
migration path for achieving the eventual goal. Initially, only the theorem prover
would be implemented in SML, while any other tools would just be imported C.
To increase the reliability of the tools, they could be a) translated to SML, b)
shown to have certain key properties and c¢) shown to be truth preserving. This
plan would allow one to selectively focus resources on the highest risk areas.



4.2 How it Applies to Research

Back-to-Basics Formal verification began as a research field with code techniques
developed by Floyd, Hoare and Dijkstra. It is refreshing to be able to provide
a modern level of automated support for the techniques on which the field was
founded. Even better, the results of these verifications will not be just academic
exercises, but can contribute to the development of the tools as well.

Self-Perpetuation The most appealing aspect of a system based on computa-
tional reflection via code proofs, though, is that successful application of the
system will facilitate even more success. The user can add code rules to the
system which will make it faster and more useful. This additional power can be
used to incorporate the more sophisticated language features which have not yet
been analyzed. The ability to employ more of the language will allow even more
code rules to be accepted by the system.

5 ACKNOWLEDGMENTS

Great thanks to Matt Kaufmann, Myra VanInwegen, Richard Boulton, Elsa
Gunter, John Reppy, Ian Soboroff, Konrad Slind, Donald Syme, John Harrison.

References

1. Michael J. C. Gordon and Tom F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, Cambridge, UK,
1993.

2. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and Al-
bert Camilleri, editors, Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design (FMCAD’96), volume 1166 of Lecture Notes in
Computer Science, pages 265—269. Springer-Verlag, 1996.

3. John Harrison. A Tour of HOL light. Unpublished Draft, October 1996.

4. Laboratory for Applied Logic, Brigham Young University,
http://lal.cs.byu.edu/lal/hol-documentation.html. The HOL Theorem Prov-
ing System. Web site featuring manuals, links to tutorials, on-line searchable
libraries.

5. Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, Cambridge MA USA, 1990.

6. Donald Syme. Reasoning with the formal definition of Standard ML in HOL. In
Jeffrey J. Joyce and Carl-Johan H. Seger, editors, Higher Order Logic Theorem
Proving and Its Applications (HUG’93); 6th International Workshop, volume 780 of
Lecture Notes in Computer Science, pages 43—58. Springer-Verlag, 1993. Vancouver,
BC, CANADA.

7. Myra Vanlnwegen. The Machine-Assisted Proof of Programming Language Proper-
ties. PhD thesis, University of Pennsylvania, August 1996.



