
CMSC 331 Principles of Programming Language

Homework - 2

1. Write a function called "repeatAndMerge", with the following type spec:

repeatAndMerge: int -> string -> string -> string

Here are a few sample runs to illustrate the expected behavior:

repeatAndMerge 0 "a" "b"

val it = "" : string

repeatAndMerge 2 "a" "b"

val it = "aabb" : string

repeatAndMerge 3 "x" "y"

val it = "xxxyyy" : string

repeatAndMerge 1 "hello" "world"

val it = "helloworld" : string

2. a) Write a function called "doubleAndSum", with the following type spec:

doubleAndSum: int list -> int

This function should take a list of integers, double each integer, and then sum the

doubled values.

Sample runs:

doubleAndSum [1, 2, 3];
val it = 12 : int

doubleAndSum [5, -1, 2];
val it = 12 : int



Given the functions:
fun curry f x y = f (x, y);
fun uncurry f (x, y) = f x y;

Determine the type specs of:
b) fun amplify (factor, nums) = doubleAndSum(List.map (fn x => x * factor) nums);
c) val amplifyCurried = curry amplify;

3. Given the following data type:

datatype iTree = EMPTY |

NODE of int * iTree * iTree;

In this definition, each node in the tree (NODE) holds an integer and has two children,
which are also of type iTree (either NODE or EMPTY).
You need to write a function called sumTree with the type specification:

sumTree : iTree -> int list

The function should traverse the tree in a pre-order fashion (root, then left, then right)
and perform the following operations:

a. For each node, calculate the sum of its value and all values in its right subtree.
b. Only include the result of step a in the output list for the root and all right nodes

(ignore the left subtree of each node after the root).

Sample Runs:

sumTree (NODE(10, EMPTY, NODE(5, EMPTY, NODE(2, EMPTY, EMPTY))));

val it = [17, 7, 2] : int list;

Explanation: The root node 10 plus the sum of its right subtree 5 + 2 = 7, making 17.
Then, for the right node 5 plus its right subtree 2 makes 7, and finally, the leaf node 2 is
just 2.

sumTree (NODE(3, NODE(2, EMPTY, EMPTY), NODE(4, EMPTY, NODE(1, EMPTY,
EMPTY))));

val it = [8, 5] : int list;

sumTree EMPTY;

val it = [] : int list;



4. a) Write a function which inserts strings into the cTree datatype.

Your function should have this type spec: string -> cTree -> cTree

Note:

i) the strings should be stored in-order in the tree.

ii) inserting another copy of a string should just increase the count field on

that node.

b) After that, Write a function that searches for a string in a cTree data type and returns
the count associated with that string. If the string is not found, the function should
return 0.

Your function should have this type spec: string -> cTree -> int


