CMSC 331: Principles of programming language

Homework - 1

- 1. Derive the string using leftmost derivation and draw the parse tree for the following grammar.
 - i) String: aabbababba

Grammar:

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid bS \mid aBB$

ii) $x = \sin(y) + \exp(z)$

Grammar:

 $S \rightarrow V = E \mid E$

 $V \rightarrow x \mid y \mid z$

 $E \rightarrow E + T \mid E - T \mid T$

 $T \rightarrow T * F | T / F | F$

 $F \rightarrow (E) \mid V \mid fun(V)$

fun \rightarrow sin | cos | exp

- 2. Demonstrate if the grammar is ambiguous or unambiguous. (Note: Both are different questions)
 - i) S \rightarrow aSa | bSb | a | b | ϵ (Here ' ϵ ' represents empty string)

ii) $S \rightarrow aB \mid ab$

 $A \rightarrow AB \mid a$

 $B \rightarrow Abb \mid b$

- 3. Determine which of the following words are accepted by the given simple regular expression. (Each question may have one or more correct answers)
 - i) (a+b)(a+b)a(a+b)*
 - a) aabbabab
 - b) bababaab
 - c) abaabbab
 - d) bbaaabba

- ii) (a+b)*b(a+b)(a+b)(a+b)
 - a) ababbbaaabb
 - b) babbabbbabb
 - c) abababbaaba
 - d) bbbababab
- 4. Construct the regular expression for the following language.

L = {
$$a^mb^n$$
 | m+n is even }

5. Convert the following EBNF to BNF:

$$S \to A\{bA\}$$

$$\mathsf{A} \to \mathsf{a}[\mathsf{b}]\mathsf{A}$$