CMSC 331: Principles of Programming Language Homework 1 Solutions

1. Given the grammar:

$$S \rightarrow I = E$$

 $I \rightarrow a \mid b \mid c$
 $E \rightarrow I + E \mid I * E \mid (E) \mid I$

Draw a parse tree and leftmost derivation for the following sentences:

I.
$$a = a + (b * (c))$$

II.
$$b = b * (a + (b * c))$$

III.
$$c = a + b + (c)$$

Sol:

2. Demonstrate that the following grammar is ambiguous:

$$S \rightarrow I$$

 $I \rightarrow E + E \mid (E) \mid E * E \mid I$
 $E \rightarrow a-z \mid 0-9$

Here are two different left-most derivation of the same string:

$$S \rightarrow I \rightarrow E * E \rightarrow E + E * E \rightarrow a + b + c$$

 $S \rightarrow I \rightarrow E + E \rightarrow E + E * E \rightarrow a + b + c$

3. Determine which of the sentences (a-e) are in this grammar:

$$S \rightarrow aScB \mid A \mid b$$

$$A \rightarrow cA \mid c$$

$$B \rightarrow d \mid A$$

a. abcbd not in grammar

S can derive a word that starts with a (aScB) or c (A) or b; must use first prod; first S must go $S \rightarrow b$, so we have abcB but, "B" only goes to strings that are just b or start with c

- b. abababc "b" can only be produced from an S; S is always followed by "c"; therefore "ba" can't be there.
- c. cccc $S \rightarrow A \rightarrow cA \rightarrow ccA \rightarrow cccA \rightarrow cccc$
- d. accd $S \rightarrow aScB \rightarrow aAcB \rightarrow accB \rightarrow accd$
- e. aabcdcc $S \rightarrow aScB \rightarrow aaScBcB \rightarrow aabcBcB \rightarrow aabcdcB \rightarrow aabcdcA \rightarrow aabcdcc$
- 4. Convert the following basic EBNF rules to the basic BNF notation:

 $S \rightarrow BA\{Ac\}$

 $A \rightarrow a[b]A$

 $B \rightarrow bc[d]A$

Sol: $S \rightarrow BAX$

 $X \rightarrow XAc \mid Ac$

 $A \rightarrow aYA$

 $Y \rightarrow b \mid bY$

 $B \rightarrow bcZA$

 $Z \rightarrow d \mid dZ$