1. Derivation and Parse Tree:

Derive the string using leftmost derivation and draw the parse tree for the following grammar.

i) **String:** abbbaaabbaba

Grammar:

$$S \rightarrow aB \mid bA$$

$$A \rightarrow a \mid aS \mid bAA$$

$$B \rightarrow b \mid bS \mid aBB$$

ii) **Expression:** y = cos(x) - sin(z) * log(y)

Grammar:

$$S \rightarrow V = E \mid E$$

$$V \rightarrow x \mid y \mid z$$

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow T * F | T / F | F$$

$$F \rightarrow (E) \mid V \mid fun(V)$$

2. Ambiguity Check:

Demonstrate that the following grammar is ambiguous:

$$I \rightarrow E + E | (E) | E * E | I$$

$$E -> a-z \mid 0-9$$

The expression you will check with should have a digit in it.

3. Regular Expression Matching:

Determine which of the following words are accepted by the given simple regular expressions.

- i) (a+b)a(a+b)(a+b)*
- a) abbabab
- b) baaabba
- c) abbaabb
- d) aabaab
- ii) (a+b)*bb(a+b)(a+b)
- a) abababba
- b) babbaabb
- c) ababbbaa
- d) bbbabba

4. Regular Expression Construction:

Construct a regular expression for the following language:

$$L = \{ a^m b^n \mid m * n \text{ is odd } \}$$

5. **EBNF to BNF Conversion:**

Convert the following EBNF to BNF:

$$\mathsf{S} \to \mathsf{A}\{\mathsf{c}\mathsf{A}\}$$

$$A \rightarrow a[c]A$$