
Question 1: List Filtering Function

Write a function called filterEven with the following type spec:

fun filterEven: int list -> int list

The function should take a list of integers and return a new list
containing only the even numbers.

Example Runs:

filterEven [1, 2, 3, 4, 5]; (* Expected output: [2,4] *)
filterEven [7, 9, 11]; (* Expected output: [] *)

Question 2: List Transformation with Mapping

Write a function called tripleAndSubtract with the following type
spec:

fun tripleAndSubtract: int list -> int list

This function should triple each element of the list and then subtract
1 from the result.

Example Runs:

tripleAndSubtract [1, 2, 3]; (* Expected output: [2,5,8] *)
tripleAndSubtract [0, -2, 4]; (* Expected output: [-1,-7,11] *)

Question 3: Tree Maximum Value

Given the following data type for a binary tree:

datatype result = NONE | SOME of int;

datatype iTree = EMPTY | NODE of int * iTree * iTree;

Write a function called maxValue with the type specification:

fun maxValue: iTree -> result

This function should return the maximum integer value in the tree. If
the tree is empty, it should return NONE.

Example Runs:

maxValue (NODE(10, NODE(5, EMPTY, EMPTY), NODE(20, EMPTY, EMPTY)));
(* Expected output: SOME 20 *)
maxValue EMPTY; (* Expected output: NONE *)

Question 4: Frequency Counting in a Custom Tree

Consider a datatype representing a tree that holds string values and a
frequency count:

datatype cTree = CEMPTY | CNODE of string * int * cTree * cTree;

Write a function updateCount with the following type spec:
fun updateCount: string * cTree -> cTree

This function should insert a string into the tree in order. If the
string is already present, increment its frequency count by 1. If not,
insert it in the correct in-order position.

Example Runs:

(* Given an initial tree: *)
val tree = CNODE("mango", 1, CNODE("apple", 1, CEMPTY, CEMPTY),
CNODE("peach", 1, CEMPTY, CEMPTY));
updateCount ("apple", tree); (* Expected result: "apple" count
becomes 2 *)
updateCount ("banana", tree); (* Expected result: "banana" inserted
between "apple" and "mango" *)

