CMSC 331 - Principles of programming language
Homework - 4

1. (15 pts) Write a Ruby program that defines a method called filtered_sum,
which accepts an array of integers, filters out all integers less than 10 or
greater than 100, and returns the sum of the remaining integers. The method
should return 0 if the array is empty or if no numbers meet the filtering criteria.
Samples:
filtered_sum([-12, -15, 155, 250, 2950]) #output: 0
filtered_sum([1, 5, 10, 15, 25, 150]) #output: 50
filtered_sum([]) #output: 0

2. (15 pts) Write a Ruby program that takes a single string and returns a new
string containing only the characters at prime indices (indices 2, 3, 5,7, 11, 13,
...) of the input string.
Samples:
Input:
input_string_1 = "123456789"
Output:
"'2357"

Input:

input_string_2 = "Check for primes"
Output:

"hekfpi"

3. (20 pts) Write a Ruby program that takes a list of strings. Then removes all
vowels from the strings. Then, find the shortest string that is a palindrome. If
no palindrome exists, return nil.

Note: If there are two or more shortest strings of the same length that are
palindromes after removing vowels then return the first occurrence.
Samples:

Input:

strings = ["car”, "clock”, "machine", "madam", "magnet"]

Output:

mdm

Input:

strings = ["apple", "banana", "orange", "grape", "kiwi']
Output:

nil

Input:

strings = ["hello", "world", "abcba", "roar", "deed"]
Output:

rr

. (50 pts) Design and implement a bank management system in Ruby that
handles multiple bank accounts identified by unique account numbers. Your
system should be able to perform operations such as deposits, withdrawals,
balance inquiries, account with highest balance, and average balance of the
bank along with proper error handling

Requirements:

Your implementation should consist of two main classes: BankAccount and
Bank as follows:

BankAccount class:

It will be used internally by the Bank class. The BankAccount class will hold
details for individual accounts, such as the account number, name, and
balance.

e Initializer:

e The class should have an initializer that accepts an account
number, an account holder's name, and an initial balance. The
initial balance should not be negative.

e Accessibility:

e The account_number and name should be read-only after the
account is initialized, ensuring that these details cannot be
modified.

e The balance should be both readable and writable, allowing for
updates through deposits and withdrawals.

Bank Class:
e Initializer: Starts with an empty list of accounts.
e Methods:

e add_account(account_number, name, initial_balance): Adds a
new BankAccount with a unique account number, name, and
initial balance to the bank.

The initial balance must be non-negative; otherwise, returns
"Invalid initial balance."

Your Tasks:

Ensures that account numbers are unique(if the account
number is not unique, then return “Account number already
exists”).

Ensure account number length should be 10. In case of any
other length, it should return “Account number length should be
10")

deposit(account_number, amount): Deposits the specified
amount into the account associated with the given account
number and return account balance after deposit. Returns
"Account not found" if no account matches the account number.
withdraw(account_number, amount): Withdraws the specified
amount from the account associated with the given account
number and returns the account balance after withdrawal.
Returns "Account not found" if no account matches the account
number. Returns “Insufficient balance” if withdrawal balance is
greater than account balance.
check_balance(account_number): Returns the balance of the
account associated with the given account number. Returns
"Account not found" if no account matches the account number.
highest_balance: Identifies the account with the highest balance
and returns its account number. Returns "No accounts" if the
bank has no accounts.

average_balance: Calculates and returns the average balance
across all accounts in the bank. Returns 0 if there are no
accounts.

e Implement the BankAccount and Bank classes with the functionality
and error handling as described above.
e Perform the below operations:

Create three accounts with unique account numbers and initial
balances.

Perform operations to generate errors while creating account(by
giving input as a non-unique account number and negative
balance)

Perform a mix of deposits and withdrawals, including scenarios
expected to generate error messages (e.g., exceeding account
balance, Account not found, using negative amounts).

Inquire the balances of specific accounts after transactions.
Include scenarios expected to generate error
messages(Account not found) while checking balance.

e Determine the account with the highest balance.
e Compute the average balance of all accounts.

You can refer the below sample operations(You can use same or different
operations but you have to cover all the above scenarios) :

Creating three accounts

puts bank.add_account("1234567890", "Harry", 20000) # Should create
account

puts bank.add_account("9988998899", "Nicholas", 25000) # Should
create account

puts bank.add_account("4455445544", "Charlie", 38000) # Should
create account

Errors while creating accounts

puts bank.add_account("1234567890", "Duplicate Test", 3500)

Account number already exists

puts bank.add_account("12345678", "Acoount number errror test",
1000) # Account number length should be 10

puts bank.add_account("9999944444", "Negative number test", -10000)
Invalid initial balance

deposits and withdrawals along with error handling

puts bank.deposit("1234567890", 3000) # Deposit into Harry's account
and shows updated balance 23000

puts bank.withdraw("1234567890", 4500) # Withdraw from Harry's
account and shows updated balance 18500

puts bank.withdraw("1234567890", 28000) # Insufficient balance

puts bank.deposit("1111111111",1200) # Account not found

Balance Inquiry along with error handling

puts bank.check_balance("1234567890") # Should show updated
balance 18500

puts bank.check_balance("1111111111") # Account not found

Determining the account with the highest balance

puts "Account number with highest balance: #{bank.highest_balance}"
Account number with highest balance: 4455445544

Computing the average balance of all accounts

puts "Average balance: #{bank.average_balance}"

#Average balance: 27166.666666666668

Submission Instructions:
Submit your code and attach the screenshots of code execution along with the
outputs.

