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Abstract:

Multi-core processors dominate current mainframe, server, and high performance 
computing (HPC) systems.  This paper provides synthetic kernel and natural benchmark 
test results from an HPC system at the NASA Goddard Space Flight Center in Greenbelt, 
MD that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single 
core processor systems.  Analysis of processor design, application source code, and 
synthetic and natural test results all indicate that multi-core processors can suffer from 
significant memory subsystem contention compared to similar single-core processors.

1.  INTRODUCTION

Moore’s Law predicts that the performance of 
central processing units (CPUs) doubles 
approximately every 18 months.  This prediction 
has held true for about 40 years.  Among the 
many advances in CPU design and construction, 
the single most important factor contributing to 
Moore’s prediction is manufacturers’ ability to 
fabricate chips with narrower circuit paths, pack 
transistors more densely and allow the 
processor clock to speed up.  Until recently. 

Recent generation microprocessors suffer 
increasingly from transistor current leakage due 
to the narrow width of circuit paths and the 
insulation between them.  As leakage increases, 
processors draw more power and generate 
more heat, to the point that significant further 
reductions in chip size and increases in clock 
speed may not be feasible with current 
technology.

Faced with competitive pressures and consumer 
expectations that chips will  continue to get 
faster, manufacturers have turned to multiple-
core processors.  With two, four or more CPU 
cores packed on a single chip, the theoretical 
peak performance of the chip continues to follow 
Moore’s prediction.  However, for many real 
workloads, when essentially the same memory 
subsystem has to support twice or four times as 
many instructions per second as previously, 
memory becomes a signficant bottleneck and 
peak performance is not achievable.

This paper, based on synthetic kernel and 
natural benchmark tests run primarily on a highly 
parallel Linux cluster supercomputer located at 
the NASA Center for Computational Sciences 

(NCCS) at the Goddard Space Flight Center in 
G r e e n b e l t , M a r y l a n d , i l l u s t r a t e s t h e 
phenomenon of multi-core processor memory 
contention that other sites have also observed.

The paper is structured as follows:

• Section 1 describes the NCCS environment, 
major workloads and HPC systems. 

• Section 2 discusses recent generation multi-
core processor design.

• Section 3 provides synthetic  kernel  and 
natural application benchmark test results.

• Section 4 discusses a sample of results from 
other studies.

• Section 5 provides some conclusions.

1.1   NCCS ENVIRONMENT

Goddard is a major center for NASA's  Science 
Mission Directorate and is home to the nation's 
largest community of Earth scientists and 
engineers.   Goddard's missions include 
expansion of knowledge of the Earth and its 
environment, the solar system, and the universe 
through observations from space.  The Hubble 
Space Telescope was designed and built at 
Goddard, and it is a design center for Earth-
observing satellites and other spacecraft.  
Goddard is also the home of the NCCS.

NCCS is a supercomputing data center that 
provides Goddard's science community with 
HPCs, mass storage, network infrastructure, 
software and support services.  About 600 
scientists use NCCS systems to increase their 
understanding of the Earth and space through 
computational modeling and processing of 
space-borne observations.  NCCS systems are 
targeted to the specialized needs of Earth and 
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space scientists and NASA’s exploration 
initiative.

NCCS performance management was the 
subject of a 2003 CMG paper [Glassbrook].

1.2   NCCS WORKLOADS

The largest NCCS supercomputer workloads are 
mathematical models of the Earth's atmosphere, 
oceans and climate.  One important constituent 
of this workload is data assimilation, which 
processes Earth-observing satellite data and 
other sparse climate data inputs and generates 
complete models of the global climate that are 
the best fit of current data.

Examples of other workloads include the 
following:

• 3D Modeling of High Energy Emission from 
Rotation-Powered Pulsars

• 3D Simulations of Accretion to a Star with 
Magnetic Field

• Assimilation of Satellite Observations of 
Clouds to Improve Forecast Skill

• Gravity Wave Simulations
• Global  Magnetohydrodynamic Simulations 

of the Solar Wind in Three Dimensions

And many others.

Like most other computational science and 
engineering workloads, NCCS Earth and space 
science applications represent the physical 
object of inquiry as a multidimensional  grid and 
simulate the behavior of that object by 
computational manipulation of that grid.  Climate 
models divide the Earth’s atmosphere into cells 
and rep resen t the behav io r o f w ind , 
precipitation, clouds, heat, chemicals and other 
variables within and across cells by numeric 
simulation.

The largest organizational user of NCCS 
systems is the Global Modeling and Assimilation 
Office (GMAO) [GMAO].  Currently, GMAO uses 
the “GEOS-5” code for its major production 
assimilation workload.  GEOS-5 maps the 
Earth’s surface using the cubed sphere, which is 
illustrated in Exhibit 1, below.  The Cubed 
Sphere mapping avoids problems associated 
with the more traditional mapping along lines of 
latitude and longitude, which suffer from very 
narrow cells near the poles that require special 
treatment.

Exhibit 1 – Cubed Sphere Mapping of the Earth

1.3   CURRENT NCCS SYSTEMS

Currently, the principal  computational platform at 
NCCS is “Discover,” a Linux cluster that includes 
hardware manufactured by Linux Networx and 
IBM with 6784 CPUs, including dual- and quad-
core Dempsey, Woodcrest, Harpertown and 
Dunnington processors manufactured by Intel.  
Exhibit 2 summarizes the processing resources 
on Discover. Other Discover hardware resources 
include:

• Infiniband internal network mesh
• Disk drives from Data Direct Networks and 

other vendors
• Tape robots from Sun/StorageTek

This paper focuses on Discover’s multi-core 
processor performance. 

2.  MULTI-CORE PROCESSOR 
DESIGN

For the purposes of this paper, we distinguish 
between cores, processors and nodes.

• Cores = central processing units, including 
the logic needed to execute the instruction 
set, registers & local cache

• Processors = one or more cores on a single 
chip, in a single socket, including shared 
cache and network and memory access 
connections

• Node = a board with one or more 
processors and local memory, network 
attached



3

Site Goddard Goddard Goddard Goddard

System Discover - Base
Discover - SCU 
1&2

Discover - SCU 
3&4

Dali – Data 
Analysis

CPU
Intel 5060 
(Dempsey)

Intel 5150 
(Woodcrest)

Intel 5420 
(Harpertown)

Intel 7400
(Dunnington)

Clock - GHz 3.2 2.66 2.5 2.0
Release Date May 06 June 06 Nov 07 Sep 08
MB L2 Cache/
Core 2 2 3

1.5 MB L2 &
4 MB L3

Flops/Clock 2 2 4 4
Cores/Socket Dual Dual Quad Quad
Nodes/System 128 512 512 8
Total Cores 512 2048 4096 128
Peak TF Calc 3.278 10.8954 40.96 1.28
GB Memory/
Core 0.6 0.6 2 16
Front Side Bus 
MHz 1066 1066 1333 1066
Switch Infiniband Infiniband Infiniband Infiniband
OS SUSE Linux SUSE Linux SUSE Linux SUSE Linux
Scheduler PBS PBS PBS PBS
MPI Scali-MPI Scali-MPI Open MPI 1.2.5 No MPI

Compiler
Intel Fortran 
10.1.013

Intel Fortran 
10.1.013

Intel Fortran 
10.1.013

Intel Fortran 
10.1.013

Manufacturer LNXI LNXI IBM IBM

Exhibit 2  Table of Discover Processor Components

This conceptual (not physical) diagram 
illustrates these terms.

Exhibit 3 – Cores, Processors and Nodes

The system user and job scheduler (on 
Discover, the Portable Batch Scheduler [Spear] 
from Altair) control  each application’s use of one 
or more cores on the dual-core Dempsey and 
Woodcrest or quad-core Harpertown and 
Dunnington processors.  When only one core on 

a processor and node are active, that core 
enjoys unencumbered use of all  the processor 
and node resources, including all levels of 
cache, main memory, and access paths.  When 
more than one core is active, they must share 
these resources and contention for these 
resources occurs.  We examine contention for 
t he sha red cache and ma in memory 
(collectively, the memory subsystem) in this 
paper.

3.  MULTI-CORE BENCHMARK 
RESULTS

To begin with, we studied the performance of the 
memory subsystem with a single core active 
using a kernel benchmark.
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The results that follow are variable in terms of 
memory stride and memory range.  Range 
means the total memory footprint that the array 
variable “p” spans and the kernel touches.  
Stride means the distance between successive 
read and write [r+w] operation in loops.  The 
benchmark moves within the memory range  and 
by the memory stride at each loop iteration.

“Cache miss latency” results are based on read 
operations; “Cache replacement time” results 
are based on write operations; r+w operations 
are the sum.

Note, some cluster systems, such as those 
manufactured by Silicon Graphics, provide direct 
memory access across the cluster from any 
core, processor or node.  The Discover cluster, 
in contrast, and most current generation Linux 
clusters, only provide direct access to memory 
local to the node.  Communication across nodes 
is handled by message passing using the MPI 
interface (and the Infiniband internal mesh 
network).

3.1  MEMORY KERNEL

The memory core synthetic  kernel  is written in C 
and is derived from a code published in 
[Hennessey].  The code reads and writes data 
by incrementing an array variable, “p,” as seen 
in the following fragment.
---------------------------------------------------------------
/* inner loop does the actual read and write of 
memory */
for (j = 0; j < lim; j += stride) {
/*cache[j]++; /* r+w one location in memory */
 p[j]++;
 } /* for j */ 
---------------------------------------------------------------

3.1.1  SINGLE CORE KERNEL RESULTS

Exhibit 4 shows the kernel  results using a single 
active core on the dual-core Woodcrest 
processor in the Scalable Cluster Unit 1&2 
partition of Discover.

Exhibit 4 – Woodcrest Cache Miss Latency

Exhibit 4 can be interpreted as follows:

• The horizontal axis represents the range 
of memory crossed by the kernel 
program, from 1 Kbyte up to 10 Gbytes, 
on a logarithmic scale

• The vertical axis represents the cache 
miss latency (read time), also on a 
logarithmic scale, from 1 ns up to 1 ms.

• The plot represents the latency time 
measured for read operations at a 
particular memory range.

Observations about Exhibit 4 include:

Read operations separated over a short range 
show the lowest latency, consistent with a high 
hit rate in the Level  1 cache.There is a 
distinctive stair-step pattern to the plot, 
consistent with latency times that jump up to a 
new plateau when the memory range exceeds 
the size of a particular level of cache.  

The points where latency jumps up correspond 
to the sizes of the L1 and L2 caches.  The final 
plateau, starting at around 3 megabytes, 
corresponds to the latency of local main storage.  
The test does not extend beyond the capacity of 
local main storage and so does not reflect 
access times to remote storage (which would 
have to be accessed using MPI in any event).
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Exhibit 5 – Harpertown Cache Miss Latency

The format of Exhibit 5 is the same as for Exhibit 
4,  but shows the performance of the 
Harpertown chip.  Comparing Woodcrest (a 
dual-core chip) to Harpertown (a quad-core chip 
with a slightly slower clock speed), the latency of 
Harpertown is slower than Woodcrest up to the 
1 Megabyte memory range, at which point the 
Woodcrest overflows its L2 cache and degrades 
to local  main storage latency.  When Harpertown 
overflows its L2 cache at around 6 Megabytes, it 
reaches a peak latency of around 30 ns.  This 
performance is more due to the speed of the off 
chip main memory than to Harpertown itself.

Exhibit 6 – Dunnington Cache Miss Latency

Exhibit 6 shows the same data in the same 
format for the Dunnington chip, which is of more 
recent vintage than either Woodcrest or 
Harpertown.  Like the other results, it shows 
distinctive stair step performance as the kernel 

progressively overflows several  levels of 
processor cache and eventually dips into local 
main storage.  The extra stair step corresponds 
to the extra level of cache in Dunnington (see 
Exhibit 2).

Exhibit 7 – Cache Miss Latency Comparison

Exhibit 7 is an overlay of the previous three 
charts.  The larger and faster caches on 
Harpertown show that, except for small memory 
ranges (a few Kbytes), the newer Harpertown 
chip is faster than the older Woodcrest, 
notwithstanding the slower clock rate.

Because of the transistor current leakage 
problem mentioned in the introduction, newer 
chips don’t show the steady acceleration of 
clock speeds seen in prior generations.  
Improved performance and larger sizes of cache 
memory (and in the case of Dunnington, the 
newest processor in Discover) an additional 
level of cache reflects the manufacturers’ efforts 
to increase performance without increasing the 
clock rate.

The kernel is designed to eliminate the 
performance impact of each processor’s 
execution units – which the clock rate would 
tend to emphasize.  The code uses a dummy 
loop that executes instructions but does not 
stride through memory.  The graphs show 
memory latency times calculcated by subtracting 
the dummy loop execution time from the striding 
execution time.  As a result, the kernel  is 
narrowly focused on the performance of the on-
chip caches and local main storage rather than 
the performance of the execution units.
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Exhibit 8 – Harpertown Cache Miss Latency 
With Varying Strides

Exhibit 8 shows additional  results using the 
same memory kernel benchmark test, but 
varying the memory stride.  Memory stride is the 
distance between consecutive read operations.  
For a given memory range, larger memory 
strides will cross that range faster than runs with 
smaller memory strides.  The format of Exhibit 6 
is the same as for the earlier charts, and all 
results are for the Harpertown chip, except that 
multiple memory stride distances are shown 
together.

Cache memories, as well as other storage 
hardware, improve computer performance due 
to the phenomenon of reference locality, which 
can be divided into temporal  locality and spatial 
locality.  Temporal locality occurs when a storage 
location used once is likely to be used again 
soon afterwards, so that holding the location’s 
contents in fast cache storage will  likely result in 
a cache hit.  Spatial  locality occurs when a 
storage location used once is likely to result in 
the use of a nearby storage location soon 
afterwards, so that holding a location and its 
near neighbors in fast cache storage will likely 
result in a cache hit.

In Exhibit 8, the best performance comes from 
the test run with a 16 byte memory stride.  Due 
to spatial  locality, the kernel experiences a very 
high hit rate when the code accesses near 
neighbor locations in rapid succession.  For the 
256 bytes stride, performance is significantly 
slower, with the characteristic  stair-step pattern 
seen in the earlier graphics.

Exihibit 9 – Dunnington Cache Miss Latency 
With Varying Strides

Exhibit 9 shows results similar to Exhibit 8, but 
with the additional cache level stair step on the 
Dunnington processor.

3.1.2  MULTI-CORE KERNEL RESULTS

Exhibit 10 – Read and Write Time With Varying 
Strides And Cores

Exhibit 10 is based on the same memory kernel 
code as the earlier exhibits, but slices the data in 
yet another way.  One can read this Exhibit as 
follows.  The horizontal axis is the memory stride 
size – see the discussion above about memory 
stride size vs. range.  As before, this axis has a 
logarithmic scale.  The vertical  axis is the read 
and write time, rather than just the read (latency) 
time, measured as before in nanoseconds; and 
the range is from 0 to 700 nanoseconds and is 
not logarithmic. 

Each line represents the performance of a 
particular chip – Woodcrest or Harpertown.  
More importantly, however, the graph shows the 
difference between 2-core, 4-core and 8-core 
performance.  For each line, the core count is at 
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the node level.  The 2-core Woodcrest line 
means 2 cores active on the node.  Because 
there are 2 processors per node, this translates 
to 1 core active per chip.  The 4-core line 
translates to 2 cores active per chip for the same 
reason, and the 8-core Harpertown line 
translates to 4 cores active per chip.

Exhibit 10 demonstrates that these multi-core 
chips can experience contention for resources 
shared at the processor (chip) level.  As the 
memory stride expands beyond sizes that 
ensure very high hit rates in the local cache, 
there is content ion for shared cache, 
communications paths with the node, and with 
main storage local to the node.  So, whereas 
some of the literature predicts and certain 
workload tests observe linear or better than 
linear performance improvements going from 
single- to multi-core chips, in this case multi-core 
results in increased memory contention and 
reduced performance.  The natural benchmark 
tests in the following section also show this.

Additional  observations about Exhibit 10 include 
the following.

For small stride sizes, performance is very high 
for all core densities due to spatial locality.  
Performance degrades as the stride size 
expands and shows the same stair-step pattern 
as in the test results that vary memory range.

On the right side of the graph, above 100 Kbyte 
stride sizes, performance improves dramatically 
for all core densities.  The authors found that 
this improvement is most likely due to hardware 
prefetch.

[Hegde] states, with respect to the Intel 
processor archi tecture, “The hardware 
prefetcher operates transparently, without 
programmer intervention, to fetch streams of 
data and instruction from memory into the 
unified second-level  cache. The prefetcher is 
capable of handling multiple streams in either 
the forward or backward direction. It is triggered 
when successive cache misses occur in the last-
level cache and a stride in the access pattern is 
detected, such as in the case of loop iterations 
that access array elements.”

Aside from the programmer-transparent 
hardware prefetcher, the Intel instruction set has 
explicit prefetch instructions and vector 
instructions, both of which can avoid some of the 
delays accessing the memory subsystem when 
there is spatial or temporal locality.  Some 

compilers allow the application programmer to 
encourage the use of such instructions where 
the optimizer may not detect them automatically.

All  of the above – multi-level cache, hardware 
prefetch, vector instructions and compiler 
optimizations – are examples of the exploitation 
of spatial and/or temporal  locality to improve 
system performance.

3.2  CUBED SPHERE BENCHMARK RESULTS

3.2.1  CORE DENSITY CUBED SPHERE 
RESULTS

This section shows the results of running the 
Cubed Sphere application code on Harpertown 
processors within Discover, varying the number 
of cores, nodes, and core densities and 
compiling the results.

Exhibit 11 – Cubed Sphere Results Varying Core 
Counts and Densities - Table

Exhibit 11 shows Cubed Sphere benchmark 
resul ts on the Discover system using 
Harpertown processors, varying the number of 
cores and nodes, and can be interpreted as 
follows.

Each Harpertown node on the Discover cluster 
system consists of two processors, plus local 
main storage and network connections with the 
rest of the system via an Infiniband internal 
network.  Each processor ship has four cores, 
including level  1 caches for data and instructions 
local to each core and a larger level 2 cache 
shared by pairs of cores.  With four cores per 
processor and two processors per node, there 
can be up to 8 cores active on a node during a 
program run.  This core density and the total 
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number of cores in the test is set by parameters 
passed to the portable batch scheduler [Spear] 
when the job is submitted.

The first column in Exhibit 11 is the number of 
nodes in that run; the second column is the 
number of cores active per node; the third 
column is the total  number of cores in the run 
and is the product of the first two columns.  The 
fourth column is the wall-clock time and the fifth 
column is the percent of time that the code spent 
in communication between cores.

Following are some observations about Exhibit 
11.

As the total number of cores across all  test runs 
increase, the wall clock time decreases – 
performance improves.  Amdahl’s Law states 
that the performance improvement that is 
possible by running a program in parallel 
depends on the proportion of serial and parallel 
code in the program.  In this case, the Cubed 
Sphere is highly parallel, processing very similar 
work for thousands of very similar cells 
representing the Earth’s atmosphere and 
oceans, so large performance improvements 
running on an increasing number of cores is not 
surprising.

On the other hand, as the core density 
increases, the wall clock time increases for a 
given total core count – performance degrades.  
For example, running 24 total cores on 12 nodes 
with a density of 2 cores per node results in a 
wall clock time of 371.1 seconds.  Holding the 
total  core count at 24 but increasing the core 
density per node to 4 (that is, 2 cores active on 
each processor) by reducing the number of 
nodes to 6 gives a wall clock time of 411.6 
seconds.  Increasing core density to 8 cores per 
node (all that are available) increases the wall 
clock time to 601.3 seconds.

All  of these 24-core test runs had the same 
problem size and the same processing 
resources available.  The difference was in the 
shared resources.  Going from 2 to 4 core 
density per node meant content at the chip level 
– contention for the chip’s access paths to main 
storage and for the use of main storage, 
resulting in approximately a 10% increase in 
wall-clock time.  Going from 4 to 8 core density 
means contention for the shared Level  2 cache 
as well as main storage, and results in a 50% 
wall clock time increase.

The data in Exhibit 11 also appears in Exhibit 
12, plotted as multiple lines.  Exhibit 12 shows 
more clearly how the performance advantage to 
be gained by increasing the number of cores is 
offset by higher core densities and suggests that 
for this code and architecture, higher code 
densities would eventually yield no performance 
advantage at all.  Studies at other sites suggest 
that processors of conventional  architecture will 
see this phenomenon.

Exhibit 12 – Cubed Sphere Results Varying 
Core Counts and Densities – Line Chart

3.2.2  HIGH CORE COUNT CUBED SPHERE 
RESULTS

The following charts show Cubed Sphere results 
on large numbers of processor cores [Putnam].  
In these charts, core density is held at the 
maximum available on the node – e.g., 8 cores 
per node for Harpertown processor nodes on 
Discover.

The format of Exhibit 13 is as follows.  The 
horizontal axis is the number of cores running te 
test.  The vertical axis is the wall  clock time in 
seconds.  The line labelled “Linear” represents 
the theoretical linear speed-up achievable from 
a 60-core run extrapolated to a 480 core run.  
The “Discover” line is for the NCCS’ Discover 
cluster running on Harpertown processors.  The 
two “RTJones” l ines are for a cluster 
supercomputer located at the NASA Ames 
Research Center in California.  There are two 
RTJones lines, as the test was run using two 
different versions of the MPI message passing 
software.
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Exhibit 13 – Cubed Sphere – 
Sub- and Super-Linear Speed-Up

Observations about Exhibit 13:  Discover 
benchmark results showed a slightly better than 
linear speed up in the range between 60 and 90 
cores.  Between 90 and 120 cores, there was a 
close match between the Discover and 
theoretical linear speedup; and above 120 
cores, the speed up was not a good as the 
theoretical linear improvement.

The behavior of the RTJones tests with respect 
to speedup was similar to that for Discover – 
varying from slightly better to slightly worse than 
theoretical performance changes as the number 
of cores increased.  In addition, running two 
different version of MPI showed that there was 
some performance impact from changing the 
MIP version.  Overall, Discover was faster than 
RTJones.

Exhibit 14 – Throughput

Exhibit 14 also compares Discover with 
RTJones.  The horizontal axis is the same – the 
number of cores (here labelled as NPEs – the 
number of processing elements) working on the 
problem.  However, the vertical axis is inverted 
from the prior graph.  In Exhibit 14, the vertical 

axis is Throughput rather than Wall  Clock time – 
higher up is faster and better.

For all three test runs in Exhibit 14, one can see 
that throughput improvements tail off as the 
number of cores (NPEs) increases, most 
noticeably above 200 cores.   Up to 100 cores, 
RTJones is faster; above that, Discover is faster.  
As in Exhibit 13, there is a slight but noticeable 
difference between the two MPI versions 
running on RTJones.

Note, Exhibits 13 and 14 both show Cubed 
Sphere benchmark results, but in Exhibit 14 it is 
a subset of the code rather than the whole 
program.  Briefly, Exhibit 14 shows results 
running the “Dynamical  Core,” which is the 
simulation of air pressure and wind in the Earth’s 
atmosphere.

Exhibit 15 – Super-Linear Speedup

Exhibit 15 also shows Cubed Sphere benchmark 
results, but has a different format.  The 
horizontal axis is logarithmic and shows the 
number of processor elements (cores).  The 
vertical axis is execution time, uses a logarithmic  
scale and displays the longest time lowest on 
the scale.  The Exhibit shows more clearly than 
the others that for a fixed core density and large 
core counts, Cubed Sphere performance 
improves better than a theoretical linear 
extrapolation.  A paper by Shameem Akhter 
[Akhter] excerpted below provides an 
explanation.

4.  OTHER MULTI-CORE TEST RESULTS

There is a substantial literature and some 
controversies surrounding mult-core processor 
performance.  Aside from the science and 
engineering supercomputer niche, multi-core 
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processors have penetrated in many other 
markets, including mainframes, servers, 
desktops and laptops.  Multi-core is the 
predominant processor architecture in these 
markets today.  A sample from this literature is 
given in the Bibliography and in the following 
discussion.

4.1  LEVESQUE

In this paper [Levesque], based on analysis of 
Opteron processors on Cray cluster systems, 
Levesque argues that “many applications are 
not limited by memory bandwidth.”  But 
“excluding message passing performance, the 
primary source of contention when moving from 
single core to dual core is memory bandwidth.”  
Using the NERSC-5 SSP appl icat ions, 
Levesque found an average performance 
penalty moving from single to dual core of 10%; 
using the NAS Parallel benchmarks, the penalty 
ranged between 10% and 45%.

Levesque proposes a simple model  for 
predicting multi-core application performance.  
The model  divides execution time into time 
spent on shared resources (memory bandwidth) 
and non-shared resources (everything else).  
The model predicts that memory bandwidth time 
will  double going from single to dual core, and 
double again going from dual  to quad core.  
Levesque’s tests show that the model’s 
predictions are quite accurate.

4.2  AKHTER

This paper [Akhter] focuses on the specific 
features of multi-core Intel  processors, including 
facilities such as “Hyper-Threading,” which 
allows multiple program threads to share a core 
by interleaving their execution times – e.g., 
when a program misses in the cache, the other 
program can use the core’s execution unit until 
the memory reference completes.  Akhter also 
discusses Gustafson’s Law, a variation on 
Amdahl ’s Law that e l im inates cer ta in 
assumptions, such as the assumption that a 
problem size is fixed.  “Amdahl’s Law assumes 
that as the number of processor cores 
increases, the problem size stays the same.  In 
most cases, this is not valid.  Generally 
speaking, when given more computing 
resources, the problem generally grows to meet 
the resources available.”  As noted in an earlier 
CMG paper [Glassbrook], climate models 
running on NCCS systems follow this pattern, 
exploiting increasingly parallel machines to run 

at finer resolutions (smaller cell sizes) and 
achieving better scientific results thereby.

Ahkter’s discussion of Gustahson’s Law touches 
an observed characteristic of the Cubed Sphere 
test, where high core counts show better than 
linear performance improvements due to 
improved cache utilization.  “Amdahl’s Law 
assumes that the best performing serial 
algorithm is strictly limited by the availability of 
CPU cycles.  This may not be the case.  A multi-
core processor may implement a separate 
cache on each core.  Thus, more of the 
problem’s data set may be stored in cache, 
reducing memory latency.”  Putnam’s test results 
on Discover and RTJones exhibi t this 
phenomenon. 

5.   CONCLUSIONS

These benchmark results, results published 
elsewhere, analysis of the NCCS’ workload and 
other workloads and of the Discover hardware 
design led to these conclusions:

• Multi-core processors work both in favor 
of and against improved application 
software performance.  Positive and 
negative performance impacts included 
the following.

− Contention for shared resources by 
multiple cores on the same processor 
(which may include the Level  2 cache, 
the path to node- and cluster-level 
resources, local main storage and off-
node storage) will reduce wall-clock 
performance compared to a single core 
on the same processor.

+ Spreading a fixed-size workload across 
multiple cores may decrease the 
working-set size for each workload 
segment, increase spatial  reference 
locality, increase cache hit rates, 
decrease the need for communication 
with other cores, processors or nodes, 
and so improve wall clock performance.

+ Increasing the number of cores 
a l l o c a t e d t o e x e c u t e r e q u i r e d 
computation for a fixed-size workload 
that can run in parallel  will  decrease the 
amount of local computation needed 
and so improve performance.

• The GEOS-5 Cubed Sphere climate 
data assimilat ion code is highly 
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susceptible to parallel execution, as the 
treatment of different areas of the 
Earth’s surface, oceans and atmosphere 
is quite similar.  GEOS-5 is an excellent 
example of an application that can make 
good use of a highly parallel Linux 
cluster HPC system.
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