
1

Multi-Core Processor Memory Contention Benchmark Analysis Case Study

Tyler Simon, Computer Sciences Corp.
James McGalliard, FEDSIM

Abstract:

Multi-core processors dominate current mainframe, server, and high performance
computing (HPC) systems. This paper provides synthetic kernel and natural benchmark
test results from an HPC system at the NASA Goddard Space Flight Center in Greenbelt,
MD that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single
core processor systems. Analysis of processor design, application source code, and
synthetic and natural test results all indicate that multi-core processors can suffer from
significant memory subsystem contention compared to similar single-core processors.

1. INTRODUCTION

Moore’s Law predicts that the performance of
central processing units (CPUs) doubles
approximately every 18 months. This prediction
has held true for about 40 years. Among the
many advances in CPU design and construction,
the single most important factor contributing to
Moore’s prediction is manufacturers’ ability to
fabricate chips with narrower circuit paths, pack
transistors more densely and allow the
processor clock to speed up. Until recently.

Recent generation microprocessors suffer
increasingly from transistor current leakage due
to the narrow width of circuit paths and the
insulation between them. As leakage increases,
processors draw more power and generate
more heat, to the point that significant further
reductions in chip size and increases in clock
speed may not be feasible with current
technology.

Faced with competitive pressures and consumer
expectations that chips will continue to get
faster, manufacturers have turned to multiple-
core processors. With two, four or more CPU
cores packed on a single chip, the theoretical
peak performance of the chip continues to follow
Moore’s prediction. However, for many real
workloads, when essentially the same memory
subsystem has to support twice or four times as
many instructions per second as previously,
memory becomes a signficant bottleneck and
peak performance is not achievable.

This paper, based on synthetic kernel and
natural benchmark tests run primarily on a highly
parallel Linux cluster supercomputer located at
the NASA Center for Computational Sciences

(NCCS) at the Goddard Space Flight Center in
G r e e n b e l t , M a r y l a n d , i l l u s t r a t e s t h e
phenomenon of multi-core processor memory
contention that other sites have also observed.

The paper is structured as follows:

• Section 1 describes the NCCS environment,
major workloads and HPC systems.

• Section 2 discusses recent generation multi-
core processor design.

• Section 3 provides synthetic kernel and
natural application benchmark test results.

• Section 4 discusses a sample of results from
other studies.

• Section 5 provides some conclusions.

1.1 NCCS ENVIRONMENT

Goddard is a major center for NASA's Science
Mission Directorate and is home to the nation's
largest community of Earth scientists and
engineers. Goddard's missions include
expansion of knowledge of the Earth and its
environment, the solar system, and the universe
through observations from space. The Hubble
Space Telescope was designed and built at
Goddard, and it is a design center for Earth-
observing satellites and other spacecraft.
Goddard is also the home of the NCCS.

NCCS is a supercomputing data center that
provides Goddard's science community with
HPCs, mass storage, network infrastructure,
software and support services. About 600
scientists use NCCS systems to increase their
understanding of the Earth and space through
computational modeling and processing of
space-borne observations. NCCS systems are
targeted to the specialized needs of Earth and

2

space scientists and NASA’s exploration
initiative.

NCCS performance management was the
subject of a 2003 CMG paper [Glassbrook].

1.2 NCCS WORKLOADS

The largest NCCS supercomputer workloads are
mathematical models of the Earth's atmosphere,
oceans and climate. One important constituent
of this workload is data assimilation, which
processes Earth-observing satellite data and
other sparse climate data inputs and generates
complete models of the global climate that are
the best fit of current data.

Examples of other workloads include the
following:

• 3D Modeling of High Energy Emission from
Rotation-Powered Pulsars

• 3D Simulations of Accretion to a Star with
Magnetic Field

• Assimilation of Satellite Observations of
Clouds to Improve Forecast Skill

• Gravity Wave Simulations
• Global Magnetohydrodynamic Simulations

of the Solar Wind in Three Dimensions

And many others.

Like most other computational science and
engineering workloads, NCCS Earth and space
science applications represent the physical
object of inquiry as a multidimensional grid and
simulate the behavior of that object by
computational manipulation of that grid. Climate
models divide the Earth’s atmosphere into cells
and rep resen t the behav io r o f w ind ,
precipitation, clouds, heat, chemicals and other
variables within and across cells by numeric
simulation.

The largest organizational user of NCCS
systems is the Global Modeling and Assimilation
Office (GMAO) [GMAO]. Currently, GMAO uses
the “GEOS-5” code for its major production
assimilation workload. GEOS-5 maps the
Earth’s surface using the cubed sphere, which is
illustrated in Exhibit 1, below. The Cubed
Sphere mapping avoids problems associated
with the more traditional mapping along lines of
latitude and longitude, which suffer from very
narrow cells near the poles that require special
treatment.

Exhibit 1 – Cubed Sphere Mapping of the Earth

1.3 CURRENT NCCS SYSTEMS

Currently, the principal computational platform at
NCCS is “Discover,” a Linux cluster that includes
hardware manufactured by Linux Networx and
IBM with 6784 CPUs, including dual- and quad-
core Dempsey, Woodcrest, Harpertown and
Dunnington processors manufactured by Intel.
Exhibit 2 summarizes the processing resources
on Discover. Other Discover hardware resources
include:

• Infiniband internal network mesh
• Disk drives from Data Direct Networks and

other vendors
• Tape robots from Sun/StorageTek

This paper focuses on Discover’s multi-core
processor performance.

2. MULTI-CORE PROCESSOR
DESIGN

For the purposes of this paper, we distinguish
between cores, processors and nodes.

• Cores = central processing units, including
the logic needed to execute the instruction
set, registers & local cache

• Processors = one or more cores on a single
chip, in a single socket, including shared
cache and network and memory access
connections

• Node = a board with one or more
processors and local memory, network
attached

3

Site Goddard Goddard Goddard Goddard

System Discover - Base
Discover - SCU
1&2

Discover - SCU
3&4

Dali – Data
Analysis

CPU
Intel 5060
(Dempsey)

Intel 5150
(Woodcrest)

Intel 5420
(Harpertown)

Intel 7400
(Dunnington)

Clock - GHz 3.2 2.66 2.5 2.0
Release Date May 06 June 06 Nov 07 Sep 08
MB L2 Cache/
Core 2 2 3

1.5 MB L2 &
4 MB L3

Flops/Clock 2 2 4 4
Cores/Socket Dual Dual Quad Quad
Nodes/System 128 512 512 8
Total Cores 512 2048 4096 128
Peak TF Calc 3.278 10.8954 40.96 1.28
GB Memory/
Core 0.6 0.6 2 16
Front Side Bus
MHz 1066 1066 1333 1066
Switch Infiniband Infiniband Infiniband Infiniband
OS SUSE Linux SUSE Linux SUSE Linux SUSE Linux
Scheduler PBS PBS PBS PBS
MPI Scali-MPI Scali-MPI Open MPI 1.2.5 No MPI

Compiler
Intel Fortran
10.1.013

Intel Fortran
10.1.013

Intel Fortran
10.1.013

Intel Fortran
10.1.013

Manufacturer LNXI LNXI IBM IBM

Exhibit 2 Table of Discover Processor Components

This conceptual (not physical) diagram
illustrates these terms.

Exhibit 3 – Cores, Processors and Nodes

The system user and job scheduler (on
Discover, the Portable Batch Scheduler [Spear]
from Altair) control each application’s use of one
or more cores on the dual-core Dempsey and
Woodcrest or quad-core Harpertown and
Dunnington processors. When only one core on

a processor and node are active, that core
enjoys unencumbered use of all the processor
and node resources, including all levels of
cache, main memory, and access paths. When
more than one core is active, they must share
these resources and contention for these
resources occurs. We examine contention for
t he sha red cache and ma in memory
(collectively, the memory subsystem) in this
paper.

3. MULTI-CORE BENCHMARK
RESULTS

To begin with, we studied the performance of the
memory subsystem with a single core active
using a kernel benchmark.

4

The results that follow are variable in terms of
memory stride and memory range. Range
means the total memory footprint that the array
variable “p” spans and the kernel touches.
Stride means the distance between successive
read and write [r+w] operation in loops. The
benchmark moves within the memory range and
by the memory stride at each loop iteration.

“Cache miss latency” results are based on read
operations; “Cache replacement time” results
are based on write operations; r+w operations
are the sum.

Note, some cluster systems, such as those
manufactured by Silicon Graphics, provide direct
memory access across the cluster from any
core, processor or node. The Discover cluster,
in contrast, and most current generation Linux
clusters, only provide direct access to memory
local to the node. Communication across nodes
is handled by message passing using the MPI
interface (and the Infiniband internal mesh
network).

3.1 MEMORY KERNEL

The memory core synthetic kernel is written in C
and is derived from a code published in
[Hennessey]. The code reads and writes data
by incrementing an array variable, “p,” as seen
in the following fragment.

/* inner loop does the actual read and write of
memory */
for (j = 0; j < lim; j += stride) {
/*cache[j]++; /* r+w one location in memory */
 p[j]++;
 } /* for j */

3.1.1 SINGLE CORE KERNEL RESULTS

Exhibit 4 shows the kernel results using a single
active core on the dual-core Woodcrest
processor in the Scalable Cluster Unit 1&2
partition of Discover.

Exhibit 4 – Woodcrest Cache Miss Latency

Exhibit 4 can be interpreted as follows:

• The horizontal axis represents the range
of memory crossed by the kernel
program, from 1 Kbyte up to 10 Gbytes,
on a logarithmic scale

• The vertical axis represents the cache
miss latency (read time), also on a
logarithmic scale, from 1 ns up to 1 ms.

• The plot represents the latency time
measured for read operations at a
particular memory range.

Observations about Exhibit 4 include:

Read operations separated over a short range
show the lowest latency, consistent with a high
hit rate in the Level 1 cache.There is a
distinctive stair-step pattern to the plot,
consistent with latency times that jump up to a
new plateau when the memory range exceeds
the size of a particular level of cache.

The points where latency jumps up correspond
to the sizes of the L1 and L2 caches. The final
plateau, starting at around 3 megabytes,
corresponds to the latency of local main storage.
The test does not extend beyond the capacity of
local main storage and so does not reflect
access times to remote storage (which would
have to be accessed using MPI in any event).

5

Exhibit 5 – Harpertown Cache Miss Latency

The format of Exhibit 5 is the same as for Exhibit
4, but shows the performance of the
Harpertown chip. Comparing Woodcrest (a
dual-core chip) to Harpertown (a quad-core chip
with a slightly slower clock speed), the latency of
Harpertown is slower than Woodcrest up to the
1 Megabyte memory range, at which point the
Woodcrest overflows its L2 cache and degrades
to local main storage latency. When Harpertown
overflows its L2 cache at around 6 Megabytes, it
reaches a peak latency of around 30 ns. This
performance is more due to the speed of the off
chip main memory than to Harpertown itself.

Exhibit 6 – Dunnington Cache Miss Latency

Exhibit 6 shows the same data in the same
format for the Dunnington chip, which is of more
recent vintage than either Woodcrest or
Harpertown. Like the other results, it shows
distinctive stair step performance as the kernel

progressively overflows several levels of
processor cache and eventually dips into local
main storage. The extra stair step corresponds
to the extra level of cache in Dunnington (see
Exhibit 2).

Exhibit 7 – Cache Miss Latency Comparison

Exhibit 7 is an overlay of the previous three
charts. The larger and faster caches on
Harpertown show that, except for small memory
ranges (a few Kbytes), the newer Harpertown
chip is faster than the older Woodcrest,
notwithstanding the slower clock rate.

Because of the transistor current leakage
problem mentioned in the introduction, newer
chips don’t show the steady acceleration of
clock speeds seen in prior generations.
Improved performance and larger sizes of cache
memory (and in the case of Dunnington, the
newest processor in Discover) an additional
level of cache reflects the manufacturers’ efforts
to increase performance without increasing the
clock rate.

The kernel is designed to eliminate the
performance impact of each processor’s
execution units – which the clock rate would
tend to emphasize. The code uses a dummy
loop that executes instructions but does not
stride through memory. The graphs show
memory latency times calculcated by subtracting
the dummy loop execution time from the striding
execution time. As a result, the kernel is
narrowly focused on the performance of the on-
chip caches and local main storage rather than
the performance of the execution units.

6

Exhibit 8 – Harpertown Cache Miss Latency
With Varying Strides

Exhibit 8 shows additional results using the
same memory kernel benchmark test, but
varying the memory stride. Memory stride is the
distance between consecutive read operations.
For a given memory range, larger memory
strides will cross that range faster than runs with
smaller memory strides. The format of Exhibit 6
is the same as for the earlier charts, and all
results are for the Harpertown chip, except that
multiple memory stride distances are shown
together.

Cache memories, as well as other storage
hardware, improve computer performance due
to the phenomenon of reference locality, which
can be divided into temporal locality and spatial
locality. Temporal locality occurs when a storage
location used once is likely to be used again
soon afterwards, so that holding the location’s
contents in fast cache storage will likely result in
a cache hit. Spatial locality occurs when a
storage location used once is likely to result in
the use of a nearby storage location soon
afterwards, so that holding a location and its
near neighbors in fast cache storage will likely
result in a cache hit.

In Exhibit 8, the best performance comes from
the test run with a 16 byte memory stride. Due
to spatial locality, the kernel experiences a very
high hit rate when the code accesses near
neighbor locations in rapid succession. For the
256 bytes stride, performance is significantly
slower, with the characteristic stair-step pattern
seen in the earlier graphics.

Exihibit 9 – Dunnington Cache Miss Latency
With Varying Strides

Exhibit 9 shows results similar to Exhibit 8, but
with the additional cache level stair step on the
Dunnington processor.

3.1.2 MULTI-CORE KERNEL RESULTS

Exhibit 10 – Read and Write Time With Varying
Strides And Cores

Exhibit 10 is based on the same memory kernel
code as the earlier exhibits, but slices the data in
yet another way. One can read this Exhibit as
follows. The horizontal axis is the memory stride
size – see the discussion above about memory
stride size vs. range. As before, this axis has a
logarithmic scale. The vertical axis is the read
and write time, rather than just the read (latency)
time, measured as before in nanoseconds; and
the range is from 0 to 700 nanoseconds and is
not logarithmic.

Each line represents the performance of a
particular chip – Woodcrest or Harpertown.
More importantly, however, the graph shows the
difference between 2-core, 4-core and 8-core
performance. For each line, the core count is at

7

the node level. The 2-core Woodcrest line
means 2 cores active on the node. Because
there are 2 processors per node, this translates
to 1 core active per chip. The 4-core line
translates to 2 cores active per chip for the same
reason, and the 8-core Harpertown line
translates to 4 cores active per chip.

Exhibit 10 demonstrates that these multi-core
chips can experience contention for resources
shared at the processor (chip) level. As the
memory stride expands beyond sizes that
ensure very high hit rates in the local cache,
there is content ion for shared cache,
communications paths with the node, and with
main storage local to the node. So, whereas
some of the literature predicts and certain
workload tests observe linear or better than
linear performance improvements going from
single- to multi-core chips, in this case multi-core
results in increased memory contention and
reduced performance. The natural benchmark
tests in the following section also show this.

Additional observations about Exhibit 10 include
the following.

For small stride sizes, performance is very high
for all core densities due to spatial locality.
Performance degrades as the stride size
expands and shows the same stair-step pattern
as in the test results that vary memory range.

On the right side of the graph, above 100 Kbyte
stride sizes, performance improves dramatically
for all core densities. The authors found that
this improvement is most likely due to hardware
prefetch.

[Hegde] states, with respect to the Intel
processor archi tecture, “The hardware
prefetcher operates transparently, without
programmer intervention, to fetch streams of
data and instruction from memory into the
unified second-level cache. The prefetcher is
capable of handling multiple streams in either
the forward or backward direction. It is triggered
when successive cache misses occur in the last-
level cache and a stride in the access pattern is
detected, such as in the case of loop iterations
that access array elements.”

Aside from the programmer-transparent
hardware prefetcher, the Intel instruction set has
explicit prefetch instructions and vector
instructions, both of which can avoid some of the
delays accessing the memory subsystem when
there is spatial or temporal locality. Some

compilers allow the application programmer to
encourage the use of such instructions where
the optimizer may not detect them automatically.

All of the above – multi-level cache, hardware
prefetch, vector instructions and compiler
optimizations – are examples of the exploitation
of spatial and/or temporal locality to improve
system performance.

3.2 CUBED SPHERE BENCHMARK RESULTS

3.2.1 CORE DENSITY CUBED SPHERE
RESULTS

This section shows the results of running the
Cubed Sphere application code on Harpertown
processors within Discover, varying the number
of cores, nodes, and core densities and
compiling the results.

Exhibit 11 – Cubed Sphere Results Varying Core
Counts and Densities - Table

Exhibit 11 shows Cubed Sphere benchmark
resul ts on the Discover system using
Harpertown processors, varying the number of
cores and nodes, and can be interpreted as
follows.

Each Harpertown node on the Discover cluster
system consists of two processors, plus local
main storage and network connections with the
rest of the system via an Infiniband internal
network. Each processor ship has four cores,
including level 1 caches for data and instructions
local to each core and a larger level 2 cache
shared by pairs of cores. With four cores per
processor and two processors per node, there
can be up to 8 cores active on a node during a
program run. This core density and the total

8

number of cores in the test is set by parameters
passed to the portable batch scheduler [Spear]
when the job is submitted.

The first column in Exhibit 11 is the number of
nodes in that run; the second column is the
number of cores active per node; the third
column is the total number of cores in the run
and is the product of the first two columns. The
fourth column is the wall-clock time and the fifth
column is the percent of time that the code spent
in communication between cores.

Following are some observations about Exhibit
11.

As the total number of cores across all test runs
increase, the wall clock time decreases –
performance improves. Amdahl’s Law states
that the performance improvement that is
possible by running a program in parallel
depends on the proportion of serial and parallel
code in the program. In this case, the Cubed
Sphere is highly parallel, processing very similar
work for thousands of very similar cells
representing the Earth’s atmosphere and
oceans, so large performance improvements
running on an increasing number of cores is not
surprising.

On the other hand, as the core density
increases, the wall clock time increases for a
given total core count – performance degrades.
For example, running 24 total cores on 12 nodes
with a density of 2 cores per node results in a
wall clock time of 371.1 seconds. Holding the
total core count at 24 but increasing the core
density per node to 4 (that is, 2 cores active on
each processor) by reducing the number of
nodes to 6 gives a wall clock time of 411.6
seconds. Increasing core density to 8 cores per
node (all that are available) increases the wall
clock time to 601.3 seconds.

All of these 24-core test runs had the same
problem size and the same processing
resources available. The difference was in the
shared resources. Going from 2 to 4 core
density per node meant content at the chip level
– contention for the chip’s access paths to main
storage and for the use of main storage,
resulting in approximately a 10% increase in
wall-clock time. Going from 4 to 8 core density
means contention for the shared Level 2 cache
as well as main storage, and results in a 50%
wall clock time increase.

The data in Exhibit 11 also appears in Exhibit
12, plotted as multiple lines. Exhibit 12 shows
more clearly how the performance advantage to
be gained by increasing the number of cores is
offset by higher core densities and suggests that
for this code and architecture, higher code
densities would eventually yield no performance
advantage at all. Studies at other sites suggest
that processors of conventional architecture will
see this phenomenon.

Exhibit 12 – Cubed Sphere Results Varying
Core Counts and Densities – Line Chart

3.2.2 HIGH CORE COUNT CUBED SPHERE
RESULTS

The following charts show Cubed Sphere results
on large numbers of processor cores [Putnam].
In these charts, core density is held at the
maximum available on the node – e.g., 8 cores
per node for Harpertown processor nodes on
Discover.

The format of Exhibit 13 is as follows. The
horizontal axis is the number of cores running te
test. The vertical axis is the wall clock time in
seconds. The line labelled “Linear” represents
the theoretical linear speed-up achievable from
a 60-core run extrapolated to a 480 core run.
The “Discover” line is for the NCCS’ Discover
cluster running on Harpertown processors. The
two “RTJones” l ines are for a cluster
supercomputer located at the NASA Ames
Research Center in California. There are two
RTJones lines, as the test was run using two
different versions of the MPI message passing
software.

9

Exhibit 13 – Cubed Sphere –
Sub- and Super-Linear Speed-Up

Observations about Exhibit 13: Discover
benchmark results showed a slightly better than
linear speed up in the range between 60 and 90
cores. Between 90 and 120 cores, there was a
close match between the Discover and
theoretical linear speedup; and above 120
cores, the speed up was not a good as the
theoretical linear improvement.

The behavior of the RTJones tests with respect
to speedup was similar to that for Discover –
varying from slightly better to slightly worse than
theoretical performance changes as the number
of cores increased. In addition, running two
different version of MPI showed that there was
some performance impact from changing the
MIP version. Overall, Discover was faster than
RTJones.

Exhibit 14 – Throughput

Exhibit 14 also compares Discover with
RTJones. The horizontal axis is the same – the
number of cores (here labelled as NPEs – the
number of processing elements) working on the
problem. However, the vertical axis is inverted
from the prior graph. In Exhibit 14, the vertical

axis is Throughput rather than Wall Clock time –
higher up is faster and better.

For all three test runs in Exhibit 14, one can see
that throughput improvements tail off as the
number of cores (NPEs) increases, most
noticeably above 200 cores. Up to 100 cores,
RTJones is faster; above that, Discover is faster.
As in Exhibit 13, there is a slight but noticeable
difference between the two MPI versions
running on RTJones.

Note, Exhibits 13 and 14 both show Cubed
Sphere benchmark results, but in Exhibit 14 it is
a subset of the code rather than the whole
program. Briefly, Exhibit 14 shows results
running the “Dynamical Core,” which is the
simulation of air pressure and wind in the Earth’s
atmosphere.

Exhibit 15 – Super-Linear Speedup

Exhibit 15 also shows Cubed Sphere benchmark
results, but has a different format. The
horizontal axis is logarithmic and shows the
number of processor elements (cores). The
vertical axis is execution time, uses a logarithmic
scale and displays the longest time lowest on
the scale. The Exhibit shows more clearly than
the others that for a fixed core density and large
core counts, Cubed Sphere performance
improves better than a theoretical linear
extrapolation. A paper by Shameem Akhter
[Akhter] excerpted below provides an
explanation.

4. OTHER MULTI-CORE TEST RESULTS

There is a substantial literature and some
controversies surrounding mult-core processor
performance. Aside from the science and
engineering supercomputer niche, multi-core

10

processors have penetrated in many other
markets, including mainframes, servers,
desktops and laptops. Multi-core is the
predominant processor architecture in these
markets today. A sample from this literature is
given in the Bibliography and in the following
discussion.

4.1 LEVESQUE

In this paper [Levesque], based on analysis of
Opteron processors on Cray cluster systems,
Levesque argues that “many applications are
not limited by memory bandwidth.” But
“excluding message passing performance, the
primary source of contention when moving from
single core to dual core is memory bandwidth.”
Using the NERSC-5 SSP appl icat ions,
Levesque found an average performance
penalty moving from single to dual core of 10%;
using the NAS Parallel benchmarks, the penalty
ranged between 10% and 45%.

Levesque proposes a simple model for
predicting multi-core application performance.
The model divides execution time into time
spent on shared resources (memory bandwidth)
and non-shared resources (everything else).
The model predicts that memory bandwidth time
will double going from single to dual core, and
double again going from dual to quad core.
Levesque’s tests show that the model’s
predictions are quite accurate.

4.2 AKHTER

This paper [Akhter] focuses on the specific
features of multi-core Intel processors, including
facilities such as “Hyper-Threading,” which
allows multiple program threads to share a core
by interleaving their execution times – e.g.,
when a program misses in the cache, the other
program can use the core’s execution unit until
the memory reference completes. Akhter also
discusses Gustafson’s Law, a variation on
Amdahl ’s Law that e l im inates cer ta in
assumptions, such as the assumption that a
problem size is fixed. “Amdahl’s Law assumes
that as the number of processor cores
increases, the problem size stays the same. In
most cases, this is not valid. Generally
speaking, when given more computing
resources, the problem generally grows to meet
the resources available.” As noted in an earlier
CMG paper [Glassbrook], climate models
running on NCCS systems follow this pattern,
exploiting increasingly parallel machines to run

at finer resolutions (smaller cell sizes) and
achieving better scientific results thereby.

Ahkter’s discussion of Gustahson’s Law touches
an observed characteristic of the Cubed Sphere
test, where high core counts show better than
linear performance improvements due to
improved cache utilization. “Amdahl’s Law
assumes that the best performing serial
algorithm is strictly limited by the availability of
CPU cycles. This may not be the case. A multi-
core processor may implement a separate
cache on each core. Thus, more of the
problem’s data set may be stored in cache,
reducing memory latency.” Putnam’s test results
on Discover and RTJones exhibi t this
phenomenon.

5. CONCLUSIONS

These benchmark results, results published
elsewhere, analysis of the NCCS’ workload and
other workloads and of the Discover hardware
design led to these conclusions:

• Multi-core processors work both in favor
of and against improved application
software performance. Positive and
negative performance impacts included
the following.

− Contention for shared resources by
multiple cores on the same processor
(which may include the Level 2 cache,
the path to node- and cluster-level
resources, local main storage and off-
node storage) will reduce wall-clock
performance compared to a single core
on the same processor.

+ Spreading a fixed-size workload across
multiple cores may decrease the
working-set size for each workload
segment, increase spatial reference
locality, increase cache hit rates,
decrease the need for communication
with other cores, processors or nodes,
and so improve wall clock performance.

+ Increasing the number of cores
a l l o c a t e d t o e x e c u t e r e q u i r e d
computation for a fixed-size workload
that can run in parallel will decrease the
amount of local computation needed
and so improve performance.

• The GEOS-5 Cubed Sphere climate
data assimilat ion code is highly

11

susceptible to parallel execution, as the
treatment of different areas of the
Earth’s surface, oceans and atmosphere
is quite similar. GEOS-5 is an excellent
example of an application that can make
good use of a highly parallel Linux
cluster HPC system.

BIBLIOGRAPHY

[Akhter] Akhter, Shameem and Roberts, Jason.
“Mul t i -Core Programming – Increasing
Performance Through Software Multi-threading.”
Intel Press, April 2006.

[Alam] Alam, S.R., Barrett, R.F., Kuehn, J.A.,
Roth, P.C., and Vetter, J.S. “Characterization of
Scientific Workloads on Systems with Multi-Core
Processors.” IEEE International Symposium on
Workload Characterization. Oct. 2006, San
Jose, CA; 225-236.

[Chai] Chai, L., Gao, Q., and Panda, D.K.
“Understanding the Impact of Multi-Core
Architecture in Cluster Computing: A Case Study
with Intel Dual-Core System.” International
Symposium on Cluster Computing and the Grid,
2007, Rio de Janeiro, Brazil, 2007.

[Glassbrook] Glassbrook, Richard and
McGalliard, James. “Performance Management
at an Earth Science Supercomputer Center.”
CMG 2003.

[GMAO] gmao.gsfc.nasa.gov/

[Hennesy] Hennessy, J. and Patterson, D.
Computer Architecture: A Quantitative Approach,
2nd Edition. Morgan Kauffmann, San Mateo,
California.

[Hegde] Hegde, Ravi. “Optimizing Application
Performance on Intel® Core™ Microarchitecture
Using Hardware-Implemented Prefetchers,”
software. intel.com.

[Levesque] Levesque, J., Larkin, J., Foster, M.,
Glenski, J., Geissler, G., Whalen, S., Waldecker,
B., Carter, J., Skinner, D., He, H., Wasserman,
H., Shalf, J., Shan, H., and Strohmaier, E.
“Understanding and Mitigating Multicore
Performance Issues on the AMD Opteron
Architecture” (March 7, 2007) Lawrence
Be rke ley Na t i ona l Labo ra to r y. Pape r
LBNL-62500.

[Putnam] Putnam, William M. “The Finite-
Volume Dynamical Core on the Cubed-
Sphere” Poster. NASA-NOAA-Florida State
University, 2007, and email
correspondence.

[Spear] Spear, Carrie and McGalliard, James.
“A Queue Simulat ion Tool for a High
Performance Scientific Computing Center.”
CMG 2007.

