CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

Lecture 21, Fall 2014

TOPICS TODAY

- Circuits for Addition
- Standard Logic Components
- Logisim Demo

CIRCUITS FOR ADDITION

- Combinational logic circuits give us many useful devices.
- One of the simplest is the half adder, which finds the sum of two bits.
- We can gain some insight as to the construction of a half adder by looking at its truth table, shown at the right.

uts	Outputs			
Y	Sum	Carry		
0	0	0		
1	1	0		
0	1	0		
1	0	1		
	0 1 0	Y Sum 0 0 1 1 0 1		

Half Adder

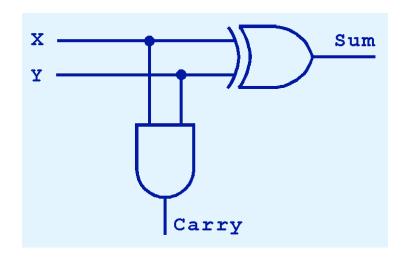
• Inputs: A and B

• Outputs: S =lower bit of A + B, $c_{out} =$ carry bit

A	B	S	$c_{ m out}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Using Sum-of-Products: $S = \overline{A}B + A\overline{B}$, $c_{\text{out}} = AB$.
- Alternatively, we could use XOR: $S = A \oplus B$.

 As we see, the sum can be found using the XOR operation and the carry using the AND operation.



Inj	puts	Outputs		
X	Y	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

- We can change our half adder into to a full adder by including gates for processing the carry bit.
- The truth table for a full adder is shown at the right.

	Inputs			Outputs		
x	Y	Carry In		Carry Sum Out		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Full Adder

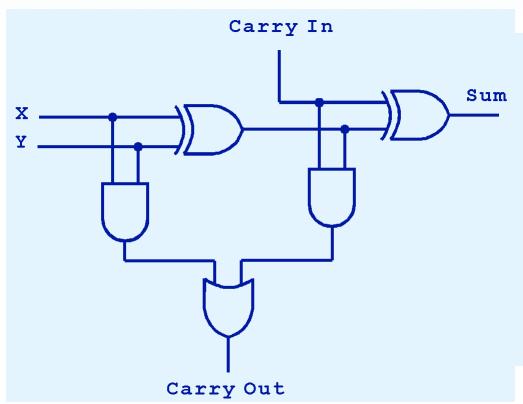
• Inputs: A, B and $c_{\rm in}$

• Outputs: S =lower bit of A + B, $c_{out} =$ carry bit

A	В	$c_{\rm in}$	S	$c_{ m out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

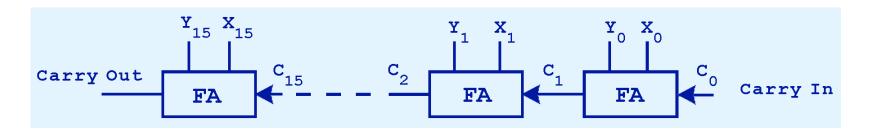
- $S = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC = A \oplus B \oplus C$.
- $c_{\text{out}} = \text{MAJ3} = AB + BC + AC$.

Here's our completed full adder.



Inputs			Outputs		
x	Y	Carry In	Sum	Carry Out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

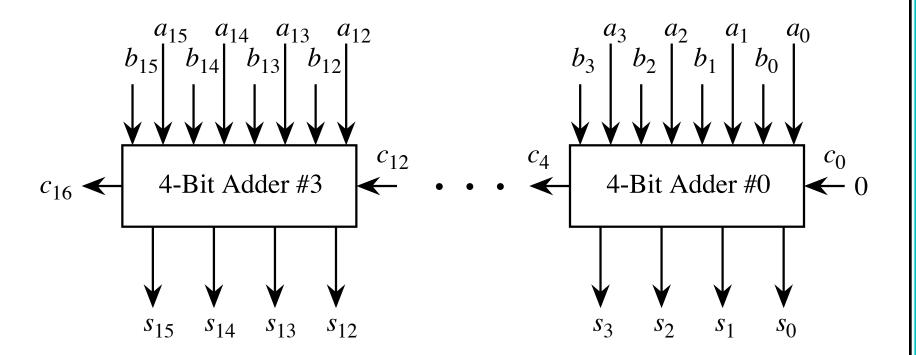
- Just as we combined half adders to make a full adder, full adders can connected in series.
- The carry bit "ripples" from one adder to the next; hence, this configuration is called a *ripple-carry* adder.



Today's systems employ more efficient adders.

Constructing Larger Adders

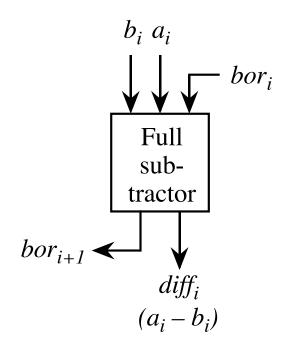
• A 16-bit adder can be made up of a cascade of four 4-bit ripple-carry adders.



Full Subtractor

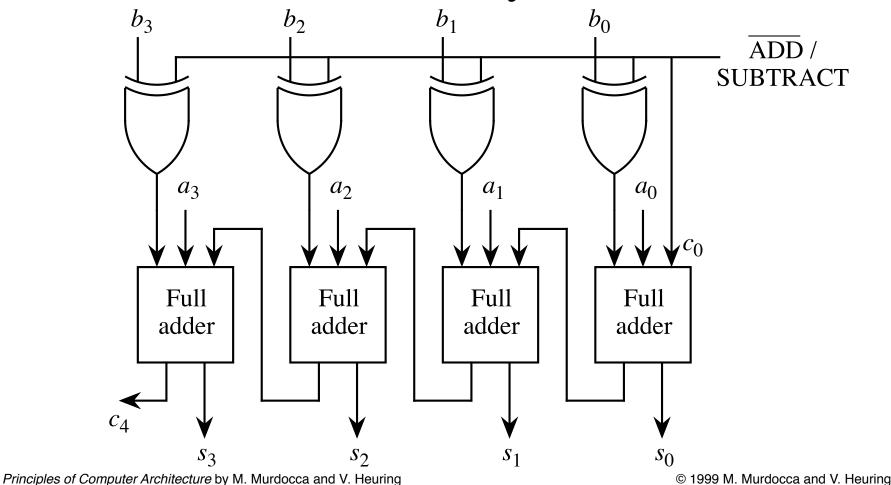
Truth table and schematic symbol for a ripple-borrow subtractor:

a_i	b_i	bor_i	$diff_i$	bor_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1



Combined Adder/Subtractor

• A single ripple-carry adder can perform both addition and subtraction, by forming the two's complement negative for B when subtracting. (Note that +1 is added at c_0 for two's complement.)



Carry-Lookahead Addition

$$s_{i} = \overline{a_{i}}\overline{b_{i}}c_{i} + \overline{a_{i}}b_{i}\overline{c_{i}} + a_{i}\overline{b_{i}}\overline{c_{i}} + a_{i}b_{i}c_{i}$$

$$c_{i+1} = b_{i}c_{i} + a_{i}c_{i} + a_{i}b_{i}$$

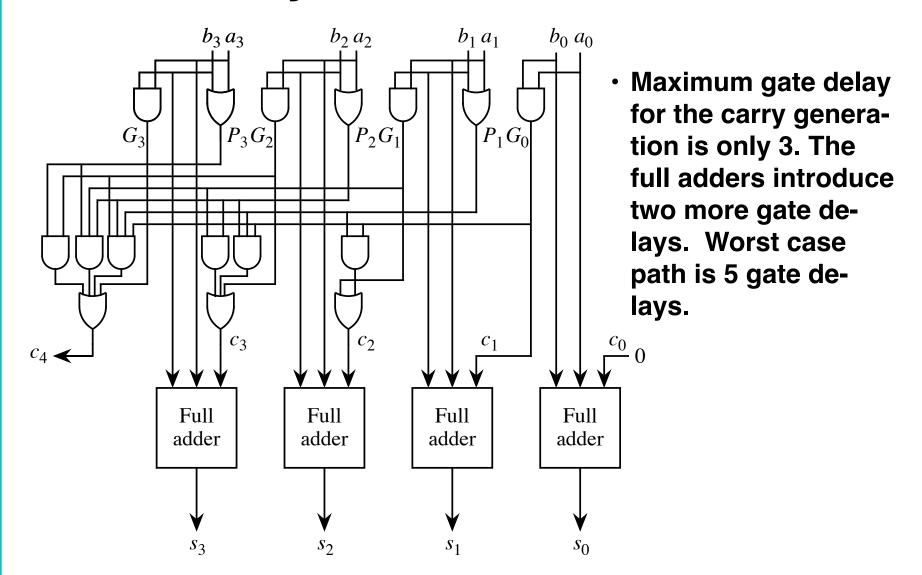
$$c_{i+1} = a_{i}b_{i} + (a_{i} + b_{i})c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$

• Carries are represented in terms of G_i (generate) and P_i (propagate) expressions.

$$G_i = a_i b_i$$
 and $P_i = a_i + b_i$
 $c_0 = 0$
 $c_1 = G_0$
 $c_2 = G_1 + P_1 G_0$
 $c_3 = G_2 + P_2 G_1 + P_2 P_1 G_0$
 $c_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$

Carry Lookahead Adder



STANDARD LOGIC COMPONENTS

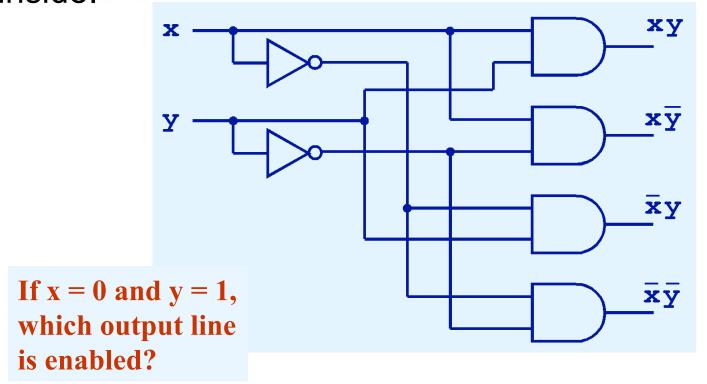
- Decoders are another important type of combinational circuit.
- Among other things, they are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.

Address decoders with n inputs can select any of 2ⁿ

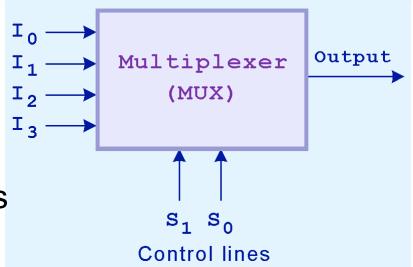
locations.

This is a block diagram for a decoder.

This is what a 2-to-4 decoder looks like on the inside.

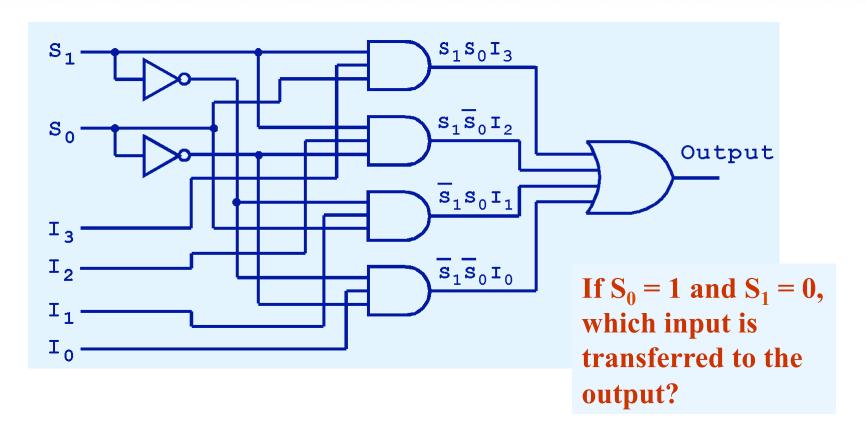


- A multiplexer does just the opposite of a decoder.
- It selects a single output from several inputs.
- The particular input chosen for output is determined by the value of the multiplexer's control lines.
- To be able to select among n inputs, log₂n control lines are needed.

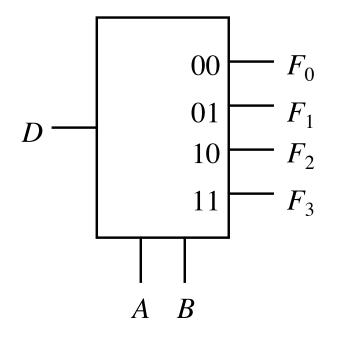


This is a block diagram for a multiplexer.

This is what a 4-to-1 multiplexer looks like on the inside.



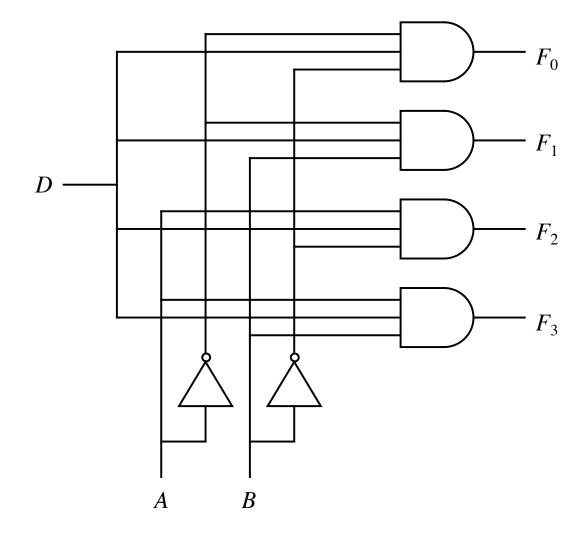
Demultiplexer



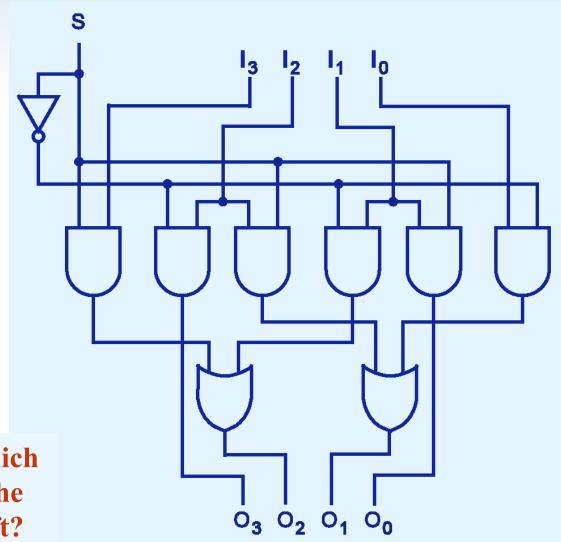
$$F_0 = D\overline{A}\overline{B}$$
 $F_2 = DA\overline{B}$
 $F_1 = D\overline{A}B$ $F_3 = DAB$

D	A	В	F_0	F_1	F_2	F_3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Gate-Level Implementation of DEMUX



 This shifter moves the bits of a nibble one position to the left or right.



If S = 0, in which direction do the input bits shift?

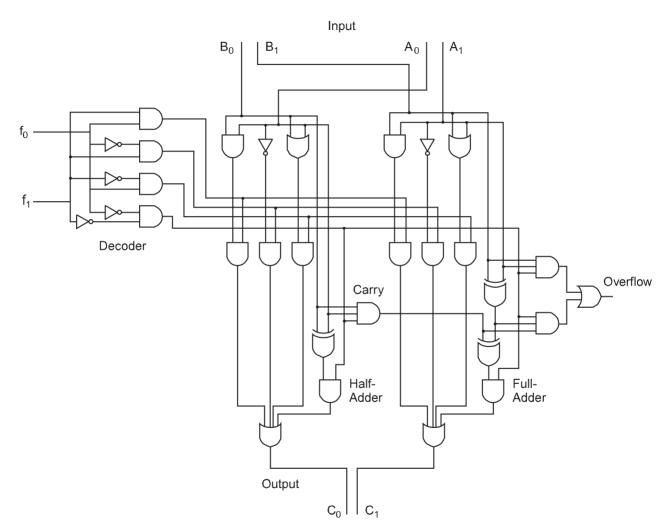


FIGURE 3.17 A Simple Two-Bit ALU

NEXT TIME

- 2-bit ALU
- Flip-flops