
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 19, SPRING 2013

TOPICS TODAY

•  Introduction to Digital Logic

•  Semiconductors, Transistors & Gates

INTRODUCTION
TO
DIGITAL LOGIC

2

Chapter 3 Objectives

•  Understand the relationship between Boolean
logic and digital computer circuits.

•  Learn how to design simple logic circuits.

•  Understand how digital circuits work together to
form complex computer systems.

Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.

Appendix A: Digital LogicA-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.
• Inputs and outputs for a CLU normally have two distinct (binary)

values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.
• The outputs of a CLU are strictly functions of the inputs, and the

outputs are updated immediately after the inputs change. A set of
inputs i0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f0 – fm.

Chapter 3: Arithmetic3-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ripple Carry Adder
• Two binary numbers A and B are added from right to left, creating

a sum and a carry at the outputs of each full adder for each bit po-
sition.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Appendix A: Digital LogicA-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .

s0

sn

io

ik

fo

fm

State bits

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢ 5 ¢ 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

5

3.2 Boolean Algebra

•  Boolean algebra is a mathematical system for
the manipulation of variables that can have
one of two values.
–  In formal logic, these values are �true� and �false.�
–  In digital systems, these values are �on� and �off,�

1 and 0, or �high� and �low.�

•  Boolean expressions are created by
performing operations on Boolean variables.
–  Common Boolean operators include AND, OR, and

NOT.

6

•  A Boolean operator can be
completely described using a
truth table.

•  The truth table for the Boolean
operators AND and OR are
shown at the right.

•  The AND operator is also known
as a Boolean product. The OR
operator is the Boolean sum.

3.2 Boolean Algebra

7

•  The truth table for the
Boolean NOT operator is
shown at the right.

•  The NOT operation is most
often designated by an
overbar. It is sometimes
indicated by a prime mark
(�) or an �elbow� (¬).

3.2 Boolean Algebra

8

•  A Boolean function has:
•  At least one Boolean variable,
•  At least one Boolean operator, and
•  At least one input from the set {0,1}.

•  It produces an output that is also a member of
the set {0,1}.

Now you know why the binary numbering
system is so handy in digital systems.

3.2 Boolean Algebra

9

•  The truth table for the
Boolean function:

 is shown at the right.

•  To make evaluation of the
Boolean function easier,
the truth table contains
extra (shaded) columns to
hold evaluations of
subparts of the function.

3.2 Boolean Algebra

10

•  As with common
arithmetic, Boolean
operations have rules of
precedence.

•  The NOT operator has
highest priority, followed
by AND and then OR.

•  This is how we chose the
(shaded) function
subparts in our table.

3.2 Boolean Algebra

11

•  Digital computers contain circuits that implement
Boolean functions.

•  The simpler that we can make a Boolean function,
the smaller the circuit that will result.
–  Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.
•  With this in mind, we always want to reduce our

Boolean functions to their simplest form.
•  There are a number of Boolean identities that help

us to do this.

3.2 Boolean Algebra

12

•  Most Boolean identities have an AND (product)
form as well as an OR (sum) form. We give our
identities using both forms. Our first group is rather
intuitive:

3.2 Boolean Algebra

13

•  Our second group of Boolean identities should be
familiar to you from your study of algebra:

3.2 Boolean Algebra

14

•  Our last group of Boolean identities are perhaps the
most useful.

•  If you have studied set theory or formal logic, these
laws are also familiar to you.

3.2 Boolean Algebra

15

•  We can use Boolean identities to simplify:

 as follows:

3.2 Boolean Algebra

16

•  Sometimes it is more economical to build a
circuit using the complement of a function (and
complementing its result) than it is to implement
the function directly.

•  DeMorgan�s law provides an easy way of finding
the complement of a Boolean function.

•  Recall DeMorgan�s law states:

3.2 Boolean Algebra

17

•  DeMorgan�s law can be extended to any number
of variables.

•  Replace each variable by its complement and
change all ANDs to ORs and all ORs to ANDs.

•  Thus, we find the the complement of:

 is:

3.2 Boolean Algebra

18

•  Through our exercises in simplifying Boolean
expressions, we see that there are numerous
ways of stating the same Boolean expression.
–  These �synonymous� forms are logically equivalent.
–  Logically equivalent expressions have identical truth

tables.
•  In order to eliminate as much confusion as

possible, designers express Boolean functions in
standardized or canonical form.

3.2 Boolean Algebra

19

•  There are two canonical forms for Boolean
expressions: sum-of-products and product-of-sums.
–  Recall the Boolean product is the AND operation and the

Boolean sum is the OR operation.
•  In the sum-of-products form, ANDed variables are

ORed together.
–  For example:

•  In the product-of-sums form, ORed variables are
ANDed together:
–  For example:

3.2 Boolean Algebra

20

•  It is easy to convert a function
to sum-of-products form using
its truth table.

•  We are interested in the values
of the variables that make the
function true (=1).

•  Using the truth table, we list the
values of the variables that
result in a true function value.

•  Each group of variables is then
ORed together.

3.2 Boolean Algebra

21

•  The sum-of-products form
for our function is:

We note that this function is not
in simplest terms. Our aim is
only to rewrite our function in
canonical sum-of-products form.

3.2 Boolean Algebra

22

•  We have looked at Boolean functions in abstract
terms.

•  In this section, we see that Boolean functions are
implemented in digital computer circuits called gates.

•  A gate is an electronic device that produces a result
based on two or more input values.
–  In reality, gates consist of one to six transistors, but digital

designers think of them as a single unit.
–  Integrated circuits contain collections of gates suited to a

particular purpose.

3.3 Logic Gates

23

•  The three simplest gates are the AND, OR, and NOT
gates.

•  They correspond directly to their respective Boolean
operations, as you can see by their truth tables.

3.3 Logic Gates

24

•  Another very useful gate is the exclusive OR
(XOR) gate.

•  The output of the XOR operation is true only when
the values of the inputs differ.

Note the special symbol ⊕
for the XOR operation.

3.3 Logic Gates

25

•  NAND and NOR
are two very
important gates.
Their symbols and
truth tables are
shown at the right.

3.3 Logic Gates

26

•  NAND and NOR
are known as
universal gates
because they are
inexpensive to
manufacture and
any Boolean
function can be
constructed using
only NAND or only
NOR gates.

3.3 Logic Gates

27

•  Gates can have multiple inputs and more than
one output.
–  A second output can be provided for the

complement of the operation.
–  We�ll see more of this later.

3.3 Logic Gates

28

•  The main thing to remember is that combinations
of gates implement Boolean functions.

•  The circuit below implements the Boolean
function:

We simplify our Boolean expressions so
that we can create simpler circuits.

3.3 Logic Gates

Appendix A: Digital LogicA-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:
M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).

• Each of the 2n terms are called minterms, ranging from 0 to 2n - 1.
• Note relationship between minterm number and boolean value.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Appendix A: Digital LogicA-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C

Sum of Products (a.k.a. disjunctive normal form)

• OR (i.e., sum) together rows with output 1

• AND (i.e., product) of variables represents each row

e.g., in row 3 when x1 = 0 AND x2 = 1 AND x3 = 1

or when x1 · x2 · x3 = 1

• MAJ3(x1, x2, x3) = x1x2x3+x1x2x3+x1x2x3+x1x2x3 =
∑

m(3, 5, 6, 7)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

! ! ! ! 1

Product of Sums (a.k.a. conjunctive normal form)

• AND (i.e., product) of rows with output 0

• OR (i.e., sum) of variables represents negation of each row

e.g., NOT in row 2 when x1 = 1 OR x2 = 0 OR x3 = 1

or when x1 + x2 + x3 = 1

• MAJ3(x1, x2, x3) = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)

=
∏

M(0, 1, 2, 4)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

! ! ! ! 2

Appendix A: Digital LogicA-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

OR-AND Implementation of Majority

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Equivalences

• Every Boolean function can be written as a truth table

• Every truth table can be written as a Boolean formula (SOP or POS)

• Every Boolean formula can be converted into a combinational circuit

• Every combinational circuit is a Boolean function

• Later you might learn other equivalencies:

finite automata ≡ regular expressions

computable functions ≡ programs

! ! ! ! 3

Universality

• Every Boolean function can be written as a Boolean formula using AND,

OR and NOT operators.

• Every Boolean function can be implemented as a combinational circuit

using AND, OR and NOT gates.

• Since AND, OR and NOT gates can be constructed from NAND gates,

NAND gates are universal.

! ! ! ! 4

Appendix A: Digital LogicA-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A
B

 A + B

A

B

 A + B

Appendix A: Digital LogicA-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

A
B F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A
B

F = A B

SEMICONDUCTORS,
TRANSISTORS
&
GATES

How do we make gates???

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0
1
1

0
1
0
1

A B

0
1
1
0

Z

Inputs Output

Switch A Switch B

“Hot”

GND
Light Z

A Truth Table
• Developed in 1854 by George Boole.
• Further developed by Claude Shannon (Bell Labs).
• Outputs are computed for all possible input combinations (how

many input combinations are there?)
• Consider a room with two light switches. How must they work?

Electrically Operated Switch

• Example: a relay

source: http://www.howstuffworks.com/relay.htm

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Semiconductors

• Electrical properties of silicon

• Doping: adding impurities to silicon
• Diodes and the P-N junction

• Field-effect transistors

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Los Alamos National Laboratory's Chemistry Division Presents

Periodic Table of the Elements

Period

Group

1

IA

1A

18

IIIA

8A

V

1
1

H
1.008

2

IIA

2A

13

IIIA

3A

14

IVA

4A

15

VA

5A

16

VIA

6A

17

VIIA

7A

2

He
4.003

2
3

Li
6.941

4

Be
9.012

5

B
10.81

6

C
12.01

7

N
14.01

8

O
16.00

9

F
19.00

10

Ne
20.18

3

11

Na

22.99

12

Mg

24.31

3

IIIB

3B

4

IVB

4B

5

VB

5B

6

VIB

6B

7

VIIB

7B

8 9 10
11

IB

1B

12

IIB

2B

13

Al
26.98

14

Si
28.09

15

P
30.97

16

S
32.07

17

Cl
35.45

18

Ar
39.95

------- VIII -----

--

------- 8 -------

4
19

K
39.10

20

Ca
40.08

21

Sc
44.96

22

Ti
47.88

23

V
50.94

24

Cr
52.00

25

Mn
54.94

26

Fe
55.85

27

Co
58.47

28

Ni
58.69

29

Cu
63.55

30

Zn
65.39

31

Ga
69.72

32

Ge
72.59

33

As
74.92

34

Se
78.96

35

Br
79.90

36

Kr
83.80

5
37

Rb
85.47

38

Sr
87.62

39

Y
88.91

40

Zr
91.22

41

Nb
92.91

42

Mo
95.94

43

Tc
(98)

44

Ru
101.1

45

Rh
102.9

46

Pd
106.4

47

Ag
107.9

48

Cd
112.4

49

In
114.8

50

Sn
118.7

51

Sb
121.8

52

Te
127.6

53

I
126.9

54

Xe
131.3

6
55

Cs
132.9

56

Ba
137.3

57

*La
138.9

72

Hf
178.5

73

Ta
180.9

74

W
183.9

75

Re
186.2

76

Os
190.2

77

Ir
190.2

78

Pt
195.1

79

Au
197.0

80

Hg
200.5

81

Tl
204.4

82

Pb
207.2

83

Bi
209.0

84

Po
(210)

85

At
(210)

86

Rn
(222)

7
87

Fr
(223)

88

Ra
(226)

89

~Ac
(227)

104

Rf
(257)

105

Db
(260)

106

Sg
(263)

107

Bh
(262)

108

Hs
(265)

109

Mt
(266)

110

()

111

()

112

()

114

()

116

()

118

()

Lanthanide
Series*

58

Ce
140.1

59

Pr
140.9

60

Nd
144.2

61

Pm
(147)

62

Sm
150.4

63

Eu
152.0

64

Gd
157.3

65

Tb
158.9

66

Dy
162.5

67

Ho
164.9

68

Er
167.3

69

Tm
168.9

70

Yb
173.0

71

Lu
175.0

Actinide
Series~

90

Th
232.0

91

Pa
(231)

92

U
(238)

93

Np
(237)

94

Pu
(242)

95

Am
(243)

96

Cm
(247)

97

Bk
(247)

98

Cf
(249)

99

Es
(254)

100

Fm
(253)

101

Md
(256)

102

No
(254)

103

Lr
(257)

Tyler Simon
from: http://ece-www.colorado.edu/~bart/book/mosintro.htm

Tyler Simon
http://jas2.eng.buffalo.edu/applets/education/mos/mosfet/mos_0.html

Tyler Simon
http://jas2.eng.buffalo.edu/applets/education/mos/mosfet/mos_0.html

An Inverter using MOSFET

• CMOS = complementary metal oxide semiconductor

• P-type transistor conducts when gate is low
• N-type transistor conducts when gate is high

A

+5v

GND

z A

+5v

GND

zA

+5v

GND

z

p-type MOSFET

n-type MOSFET

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

A

+5v

GND

z

B

GND

A

+5v

z

B

A

+5v

GND

z

B

A

+5v

GND

z

B

A

+5v

GND

z

B

0

1

1

1

11

01

10

00

zBA

NAND GATE

0

0

0

1

11

01

10

00

zBA

GND

A

+5v

zB z

GND

A

+5v

B

GND

A

+5v

B z

GND

A

+5v

B z

GND

A

+5v

B z

NOR GATE

CMOS Logic vs Bipolar Logic

• MOSFET transistors are easier to miniaturize

• CMOS logic has lower current drain

• CMOS logic is easier to manufacture

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

References

• Materials on semiconductors, PN junction and
transistors taken from the HyperPhysics web site:
<http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html>

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

