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•  Introduction to Digital Logic 

•  Semiconductors, Transistors & Gates 
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Chapter 3 Objectives 

•  Understand the relationship between Boolean 
logic and digital computer circuits. 

•  Learn how to design simple logic circuits. 

•  Understand how digital circuits work together to 
form complex computer systems. 



Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.
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The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.
• Inputs and outputs for a CLU normally have two distinct (binary)

values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.
• The outputs of a CLU are strictly functions of the inputs, and the

outputs are updated immediately after the inputs change. A set of
inputs i0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f0 – fm.
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Ripple Carry Adder
• Two binary numbers A and B are added from right to left, creating

a sum and a carry at the outputs of each full adder for each bit po-
sition.
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Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.
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Vending Machine State Transition
Diagram
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3.2 Boolean Algebra 

•  Boolean algebra is a mathematical system for 
the manipulation of variables that can have 
one of two values. 
–  In formal logic, these values are �true� and �false.� 
–  In digital systems, these values are �on� and �off,� 

1 and 0, or �high� and �low.� 

•  Boolean expressions are created by 
performing operations on Boolean variables. 
–  Common Boolean operators include AND, OR, and 

NOT. 
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•  A Boolean operator can be 
completely described using a 
truth table. 

•  The truth table for the Boolean 
operators AND and OR are 
shown at the right. 

•  The AND operator is also known 
as a Boolean product.  The OR 
operator is the Boolean sum. 

3.2 Boolean Algebra 
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•  The truth table for the 
Boolean NOT operator is 
shown at the right. 

•  The NOT operation is most 
often designated by an 
overbar. It is sometimes 
indicated by a prime mark 
( � ) or an �elbow� (¬). 

3.2 Boolean Algebra 
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•  A Boolean function has: 
•  At least one Boolean variable,  
•  At least one Boolean operator, and  
•  At least one input from the set {0,1}.   

•  It produces an output that is also a member of 
the set {0,1}. 

Now you know why the binary numbering 
system is so handy in digital systems. 

3.2 Boolean Algebra 
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•  The truth table for the 
Boolean function:  
    
 

    is shown at the right. 

•  To make evaluation of the 
Boolean function easier, 
the truth table contains 
extra (shaded) columns to 
hold evaluations of 
subparts of the function. 

3.2 Boolean Algebra 



10 

•  As with common 
arithmetic, Boolean 
operations have rules of 
precedence. 

•  The NOT operator has 
highest priority, followed 
by AND and then OR. 

•  This is how we chose the 
(shaded) function 
subparts in our table.  

3.2 Boolean Algebra 
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•  Digital computers contain circuits that implement 
Boolean functions. 

•  The simpler that we can make a Boolean function, 
the smaller the circuit that will result. 
–  Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits. 
•  With this in mind, we always want to reduce our 

Boolean functions to their simplest form. 
•  There are a number of Boolean identities that help 

us to do this.  

3.2 Boolean Algebra 
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•  Most Boolean identities have an AND (product) 
form as well as an OR (sum) form.  We give our 
identities using both forms. Our first group is rather 
intuitive: 

3.2 Boolean Algebra 
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•  Our second group of Boolean identities should be 
familiar to you from your study of algebra: 

3.2 Boolean Algebra 
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•  Our last group of Boolean identities are perhaps the 
most useful. 

•  If you have studied set theory or formal logic, these 
laws are also familiar to you. 

3.2 Boolean Algebra 
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•  We can use Boolean identities to simplify: 
  

   as follows: 

3.2 Boolean Algebra 
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•  Sometimes it is more economical to build a 
circuit using the complement of a function (and 
complementing its result) than it is to implement 
the function directly. 

•  DeMorgan�s law provides an easy way of finding 
the complement of a Boolean function. 

•  Recall DeMorgan�s law states: 

3.2 Boolean Algebra 
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•  DeMorgan�s law can be extended to any number 
of variables. 

•  Replace each variable by its complement and 
change all ANDs to ORs and all ORs to ANDs. 

•  Thus, we find the the complement of: 
 

 is: 

3.2 Boolean Algebra 
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•  Through our exercises in simplifying Boolean 
expressions, we see that there are numerous 
ways of stating the same Boolean expression. 
–  These �synonymous� forms are logically equivalent. 
–  Logically equivalent expressions have identical truth 

tables. 
•  In order to eliminate as much confusion as 

possible, designers express Boolean functions in 
standardized or canonical form. 

3.2 Boolean Algebra 
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•  There are two canonical forms for Boolean 
expressions: sum-of-products and product-of-sums. 
–  Recall the Boolean product is the AND operation and the 

Boolean sum is the OR operation. 
•  In the sum-of-products form, ANDed variables are 

ORed together. 
–  For example: 

•  In the product-of-sums form, ORed variables are 
ANDed together: 
–  For example: 

3.2 Boolean Algebra 
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•  It is easy to convert a function 
to sum-of-products form using 
its truth table. 

•  We are interested in the values 
of the variables that make the 
function true (=1). 

•  Using the truth table, we list the 
values of the variables that 
result in a true function value. 

•  Each group of variables is then 
ORed together. 

3.2 Boolean Algebra 
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•  The sum-of-products form 
for our function is: 

We note that this function is not 
in simplest terms. Our aim is 
only to rewrite our function in 
canonical sum-of-products form.  

3.2 Boolean Algebra 
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•  We have looked at Boolean functions in abstract 
terms. 

•  In this section, we see that Boolean functions are 
implemented in digital computer circuits called gates. 

•  A gate is an electronic device that produces a result 
based on two or more input values. 
–  In reality, gates consist of one to six transistors, but digital 

designers think of them as a single unit. 
–  Integrated circuits contain collections of gates suited to a 

particular purpose. 

3.3 Logic Gates 
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•  The three simplest gates are the AND, OR, and NOT 
gates. 

•  They correspond directly to their respective Boolean 
operations, as you can see by their truth tables. 

3.3 Logic Gates 
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•  Another very useful gate is the exclusive OR 
(XOR) gate.   

•  The output of the XOR operation is true only when 
the values of the inputs differ. 

Note the special symbol ⊕ 
for the XOR operation. 

3.3 Logic Gates 
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•  NAND and NOR 
are two very 
important gates.  
Their symbols and 
truth tables are 
shown at the right.  

3.3 Logic Gates 
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•  NAND and NOR 
are known as 
universal gates 
because they are 
inexpensive to 
manufacture and 
any Boolean 
function can be 
constructed using 
only NAND or only 
NOR gates.   

3.3 Logic Gates 
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•  Gates can have multiple inputs and more than 
one output. 
–  A second output can be provided for the 

complement of the operation. 
–  We�ll see more of this later. 

3.3 Logic Gates 
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•  The main thing to remember is that combinations 
of gates implement Boolean functions. 

•  The circuit below implements the Boolean 
function: 

We simplify our Boolean expressions so 
that we can create simpler circuits. 

3.3 Logic Gates 
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Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:
M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).

• Each of the 2n terms are called minterms, ranging from 0 to 2n - 1.
• Note relationship between minterm number and boolean value.
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AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C



Sum of Products (a.k.a. disjunctive normal form)

• OR (i.e., sum) together rows with output 1

• AND (i.e., product) of variables represents each row

e.g., in row 3 when x1 = 0 AND x2 = 1 AND x3 = 1

or when x1 · x2 · x3 = 1

• MAJ3(x1, x2, x3) = x1x2x3+x1x2x3+x1x2x3+x1x2x3 =
∑

m(3, 5, 6, 7)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

! ! ! ! 1



Product of Sums (a.k.a. conjunctive normal form)

• AND (i.e., product) of rows with output 0

• OR (i.e., sum) of variables represents negation of each row

e.g., NOT in row 2 when x1 = 1 OR x2 = 0 OR x3 = 1

or when x1 + x2 + x3 = 1

• MAJ3(x1, x2, x3) = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)

=
∏

M(0, 1, 2, 4)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

! ! ! ! 2
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OR-AND Implementation of Majority

F
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Equivalences

• Every Boolean function can be written as a truth table

• Every truth table can be written as a Boolean formula (SOP or POS)

• Every Boolean formula can be converted into a combinational circuit

• Every combinational circuit is a Boolean function

• Later you might learn other equivalencies:

finite automata ≡ regular expressions

computable functions ≡ programs

! ! ! ! 3



Universality

• Every Boolean function can be written as a Boolean formula using AND,

OR and NOT operators.

• Every Boolean function can be implemented as a combinational circuit

using AND, OR and NOT gates.

• Since AND, OR and NOT gates can be constructed from NAND gates,

NAND gates are universal.

! ! ! ! 4
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All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A
B

  A + B

A

B

  A + B
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DeMorgan’s Theorem
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A
B

F =  A B



SEMICONDUCTORS, 
TRANSISTORS 
& 
GATES 



How do we make gates???

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
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“Hot” 

GND
Light Z

A Truth Table
• Developed in 1854 by George Boole.
• Further developed by Claude Shannon (Bell Labs).
• Outputs are computed for all possible input combinations (how

many input combinations are there?)
• Consider a room with two light switches.  How must they work?



Electrically Operated Switch

• Example: a relay

           
source: http://www.howstuffworks.com/relay.htm

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Semiconductors

• Electrical properties of silicon

• Doping: adding impurities to silicon
• Diodes and the P-N junction

• Field-effect transistors

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Los Alamos National Laboratory's Chemistry Division Presents

Periodic Table of the Elements

Period

Group
       

1

IA

1A

18

IIIA

8A

V

1
1

H
1.008

2

IIA

2A

13

IIIA

3A

14

IVA

4A

15

VA

5A

16

VIA

6A

17

VIIA

7A

2

He
4.003

2
3

Li
6.941

4

Be
9.012

5

B
10.81

6

C
12.01

7

N
14.01

8

O
16.00

9

F
19.00

10

Ne
20.18

3

11

Na

22.99

12

Mg

24.31

3

IIIB

3B

4

IVB

4B

5

VB

5B

6

VIB

6B

7

VIIB

7B

8 9 10
11

IB

1B

12

IIB

2B

13

Al
26.98

14

Si
28.09

15

P
30.97

16

S
32.07

17

Cl
35.45

18

Ar
39.95

------- VIII -----

--

------- 8 -------

4
19

K
39.10

20

Ca
40.08

21

Sc
44.96

22

Ti
47.88

23

V
50.94

24

Cr
52.00

25

Mn
54.94

26

Fe
55.85

27

Co
58.47

28

Ni
58.69

29

Cu
63.55

30

Zn
65.39

31

Ga
69.72

32

Ge
72.59

33

As
74.92

34

Se
78.96

35

Br
79.90

36

Kr
83.80

5
37

Rb
85.47

38

Sr
87.62

39

Y
88.91

40

Zr
91.22

41

Nb
92.91

42

Mo
95.94

43

Tc
(98)

44

Ru
101.1

45

Rh
102.9

46

Pd
106.4

47

Ag
107.9

48

Cd
112.4

49

In
114.8

50

Sn
118.7

51

Sb
121.8

52

Te
127.6

53

I
126.9

54

Xe
131.3

6
55

Cs
132.9

56

Ba
137.3

57

*La
138.9

72

Hf
178.5

73

Ta
180.9

74

W
183.9

75

Re
186.2

76

Os
190.2

77

Ir
190.2

78

Pt
195.1

79

Au
197.0

80

Hg
200.5

81

Tl
204.4

82

Pb
207.2

83

Bi
209.0

84

Po
(210)

85

At
(210)

86

Rn
(222)

7
87

Fr
(223)

88

Ra
(226)

89

~Ac
(227)

104

Rf
(257)

105

Db
(260)

106

Sg
(263)

107

Bh
(262)

108

Hs
(265)

109

Mt
(266)

110

---
()

111

---
()

112

---
()

114

---
()

116

---
()

118

---
()

 

 

Lanthanide
Series*

58

Ce
140.1

59

Pr
140.9

60

Nd
144.2

61

Pm
(147)

62

Sm
150.4

63

Eu
152.0

64

Gd
157.3

65

Tb
158.9

66

Dy
162.5

67

Ho
164.9

68

Er
167.3

69

Tm
168.9

70

Yb
173.0

71

Lu
175.0

Actinide
Series~

90

Th
232.0

91

Pa
(231)

92

U
(238)

93

Np
(237)

94

Pu
(242)

95

Am
(243)

96

Cm
(247)

97

Bk
(247)

98

Cf
(249)

99

Es
(254)

100

Fm
(253)

101

Md
(256)

102

No
(254)

103

Lr
(257)

  



































Tyler Simon
from: http://ece-www.colorado.edu/~bart/book/mosintro.htm



Tyler Simon
http://jas2.eng.buffalo.edu/applets/education/mos/mosfet/mos_0.html



Tyler Simon
http://jas2.eng.buffalo.edu/applets/education/mos/mosfet/mos_0.html



An Inverter using MOSFET

• CMOS = complementary metal oxide semiconductor

• P-type transistor conducts when gate is low
• N-type transistor conducts when gate is high

A

+5v

GND

z A

+5v

GND

zA

+5v

GND

z

p-type MOSFET

n-type MOSFET

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
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CMOS Logic vs Bipolar Logic

• MOSFET transistors are easier to miniaturize

• CMOS logic has lower current drain

• CMOS logic is easier to manufacture

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



References

• Materials on semiconductors, PN junction and 
transistors taken from the HyperPhysics web site:
<http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html>
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