
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 06, SPRING 2013

tyler simon

tyler simon
Lecture 6, Fall 2014

TOPICS TODAY

•  Project Academic Integrity

•  More on jump instructions

•  Bit manipulation instructions

•  More Arithmetic Instructions

•  NEG, MUL, IMUL, DIV
•  Indexed Addressing Modes

•  Some i386 String Instructions

SHORT VS NEAR JUMPS

SHORT JUMPS VS NEAR JUMPS

•  Jumps use relative addressing
•  assembler computes an offset from address of

current instruction.
•  produces relocatable code

•  SHORT jumps use 8-bit offsets
•  target label within -128 bytes to +127 bytes

•  NEAR jumps use 32-bit offsets
•  target label within -232 bytes to +232-1 bytes

SHORT JUMPS VS NEAR JUMPS

•  Some assemblers determine SHORT vs NEAR
jumps automatically, but some do not.

•  explicitly specify SHORT jumps
 jmp SHORT somewhere

•  explicitly specify NEAR jumps

 jge NEAR somewhere

; File: jmp.asm
;
; Demonstrating near and short jumps
;

 section .text
 global _start

_start: nop

 ; initialize

start: mov eax, 17 ; eax := 17
 cmp eax, 42 ; 17 - 42 is ...

 jge exit ; exit if 17 >= 42
 jge short exit
 jge near exit

 jmp exit
 jmp short exit
 jmp near exit

exit: mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 080H ; Call kernel.

 1 ; File: jmp.asm
 2 ;
 3 ; Demonstrating near and short jumps
 4 ;
 5
 6 section .text
 7 global _start
 8
 9 00000000 90 _start: nop
10
11 ; initialize
12
13 00000001 B811000000 start: mov eax, 17 ; eax := 17
14 00000006 3D2A000000 cmp eax, 42 ; 17 - 42 is ...
15
16 0000000B 7D14 jge exit ; exit if 17 >= 42
17 0000000D 7D12 jge short exit
18 0000000F 0F8D0C000000 jge near exit
19
20 00000015 E907000000 jmp exit
21 0000001A EB05 jmp short exit
22 0000001C E900000000 jmp near exit
23
24 00000021 BB00000000 exit: mov ebx, 0 ; exit code, 0=normal
25 00000026 B801000000 mov eax, 1 ; Exit.
26 0000002B CD80 int 080H ; Call kernel.

BIT MANIPULATION

Logical (bit manipulation) Instructions

• AND: used to clear bits (store 0 in the bits):

To clear the lower 4 bits of the AL register:

AND AL, F0h 1101 0110
1111 0000
1101 0000

• OR: used to set bits (store 1 in the bits):

To set the lower 4 bits of the AL register:

OR AL, 0Fh 1101 0110
0000 1111
1101 1111

• NOT: flip all the bits

• Shift and Rotate instructions move bits around

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-31

INSTRUCTION SET REFERENCE

AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result is set to
1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)

83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

tsimo1

3-511

INSTRUCTION SET REFERENCE

OR—Logical Inclusive OR

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is set to 0 if both corresponding bits of the first and second
operands are 0; otherwise, each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAX OR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81 /1 id OR r/m32,imm32 r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8 (sign-extended)

83 /1 ib OR r/m32,imm8 r/m32 OR imm8 (sign-extended)

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32

tsimo1

3-509

INSTRUCTION SET REFERENCE

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (each 1 is cleared to 0, and each 0 is set to 1) on the destina-
tion operand and stores the result in the destination operand location. The destination operand
can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ‹ NOT DEST;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32

3-690

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift

NOTE:

* Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

3-691

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or register CL. The count is masked to 5 bits, which limits the count range to
0 to 31. A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 7-7 in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most significant
bit is either set or cleared depending on the instruction type. The SHR instruction clears the most
significant bit (see Figure 7-8 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1); the SAR instruction sets or clears the most significant bit to correspond to the sign
(most significant bit) of the original value in the destination operand. In effect, the SAR instruc-
tion fills the empty bit position’s shifted value with the sign of the unshifted value (see Figure
7-9 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction to shift a
signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

3-692

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors (starting with the
Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum count of 31. This
masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation

tempCOUNT ‹ (COUNT AND 1FH);
tempDEST ‹ DEST;
WHILE (tempCOUNT „ 0)
DO

IF instruction is SAL or SHL
THEN

CF ‹ MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF ‹ LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST ‹ DEST * 2;

ELSE
IF instruction is SAR

THEN
DEST ‹ DEST / 2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST ‹ DEST / 2 ; (* Unsigned divide *);

FI;
FI;
tempCOUNT ‹ tempCOUNT – 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT ‹ 1

THEN
IF instruction is SAL or SHL

THEN
OF ‹ MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ‹ 0;

ELSE (* instruction is SHR *)
OF ‹ MSB(tempDEST);

FI;
FI;

3-693

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

ELSE IF COUNT ‹ 0
THEN

All flags remain unchanged;
ELSE (* COUNT neither 1 or 0 *)

OF ‹ undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions where the count is greater than or equal to the size (in bits)
of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the
count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

tsimo1

7-12

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7.2.4. Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper-
ands; the NOT instruction operates on a single operand.

7.2.5. Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

• Shift.

• Double shift.

• Rotate.

7.2.5.1. SHIFT INSTRUCTIONS

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 7-7). They shift the
source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag
is loaded with the last bit shifted out of the operand.
.

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure
7-8). As with the SHL/SAL instruction, the empty bit positions are cleared and the CF flag is
loaded with the last bit shifted out of the operand.

Figure 7-7. SHL/SAL Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

Initial State

CF

0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01

After 1-bit SHL/SAL Instruction

0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00

After 10-bit SHL/SAL Instruction

Operand

tsimo1

7-13

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure
7-9). This instruction differs from the SHR instruction in that it preserves the sign of the source
operand by clearing empty bit positions if the operand is positive or setting the empty bits if the
operand is negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 3 of the Intel Architecture Software
Developer’s Manual, Volume 2).

Figure 7-8. SHR Instruction Operation

Figure 7-9. SAR Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

Initial State CF

0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1

After 1-bit SHR Instruction

0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

After 10-bit SHR Instruction

Operand

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Positive Operand) CF

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Negative Operand)

Operand

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

CF

tsimo1

7-13

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure
7-9). This instruction differs from the SHR instruction in that it preserves the sign of the source
operand by clearing empty bit positions if the operand is positive or setting the empty bits if the
operand is negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 3 of the Intel Architecture Software
Developer’s Manual, Volume 2).

Figure 7-8. SHR Instruction Operation

Figure 7-9. SAR Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

Initial State CF

0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1

After 1-bit SHR Instruction

0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

After 10-bit SHR Instruction

Operand

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Positive Operand) CF

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Negative Operand)

Operand

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

CF

tsimo1

tsimo1

tsimo1

tsimo1

3-660

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8, 1 Rotate 9 bits (CF, r/m8) left once

D2 /2 RCL r/m8, CL Rotate 9 bits (CF, r/m8) left CL times

C0 /2 ib RCL r/m8, imm8 Rotate 9 bits (CF, r/m8) left imm8 times

D1 /2 RCL r/m16, 1 Rotate 17 bits (CF, r/m16) left once

D3 /2 RCL r/m16, CL Rotate 17 bits (CF, r/m16) left CL times

C1 /2 ib RCL r/m16, imm8 Rotate 17 bits (CF, r/m16) left imm8 times

D1 /2 RCL r/m32, 1 Rotate 33 bits (CF, r/m32) left once

D3 /2 RCL r/m32, CL Rotate 33 bits (CF, r/m32) left CL times

C1 /2 ib RCL r/m32,i mm8 Rotate 33 bits (CF, r/m32) left imm8 times

D0 /3 RCR r/m8, 1 Rotate 9 bits (CF, r/m8) right once

D2 /3 RCR r/m8, CL Rotate 9 bits (CF, r/m8) right CL times

C0 /3 ib RCR r/m8, imm8 Rotate 9 bits (CF, r/m8) right imm8 times

D1 /3 RCR r/m16, 1 Rotate 17 bits (CF, r/m16) right once

D3 /3 RCR r/m16, CL Rotate 17 bits (CF, r/m16) right CL times

C1 /3 ib RCR r/m16, imm8 Rotate 17 bits (CF, r/m16) right imm8 times

D1 /3 RCR r/m32, 1 Rotate 33 bits (CF, r/m32) right once

D3 /3 RCR r/m32, CL Rotate 33 bits (CF, r/m32) right CL times

C1 /3 ib RCR r/m32, imm8 Rotate 33 bits (CF, r/m32) right imm8 times

D0 /0 ROL r/m8, 1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8, imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16, 1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16, CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16, imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32, 1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32, CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32, imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8, 1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8, CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8, imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16, 1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16, CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16, imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32, 1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32, CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32, imm8 Rotate 32 bits r/m32 right imm8 times

3-661

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination operand.
The destination operand can be a register or a memory location; the count operand is an unsigned
integer that can be an immediate or a value in the CL register. The processor restricts the count
to a number between 0 and 31 by masking all the bits in the count operand except the 5 least-
significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward
more-significant bit positions, except for the most-significant bit, which is rotated to the least-
significant bit location (see Figure 7-11 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1). The rotate right (ROR) and rotate through carry right (RCR) instructions
shift all the bits toward less significant bit positions, except for the least-significant bit, which
is rotated to the most-significant bit location (see Figure 7-11 in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1).

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag (see
Figure 7-11 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1). The RCR
instruction shifts the CF flag into the most-significant bit and shifts the least-significant bit into
the CF flag (see Figure 7-11 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1). For the ROL and ROR instructions, the original value of the CF flag is not a part of
the result, but the CF flag receives a copy of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except that a
zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the
exclusive OR of the CF bit (after the rotate) and the most-significant bit of the result. For right
rotates, the OF flag is set to the exclusive OR of the two most-significant bits of the result.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors (starting with
the Intel 286 processor) do mask the rotation count to 5 bits, resulting in a maximum count of
31. This masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ‹ OperandSize
CASE (determine count) OF

SIZE ‹ 8: tempCOUNT ‹ (COUNT AND 1FH) MOD 9;
SIZE ‹ 16: tempCOUNT ‹ (COUNT AND 1FH) MOD 17;
SIZE ‹ 32: tempCOUNT ‹ COUNT AND 1FH;

ESAC;

3-662

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

(* RCL instruction operation *)
WHILE (tempCOUNT „ 0)

DO
tempCF ‹ MSB(DEST);
DEST ‹ (DEST * 2) + CF;
CF ‹ tempCF;
tempCOUNT ‹ tempCOUNT – 1;

OD;
ELIHW;
IF COUNT ‹ 1

THEN OF ‹ MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
IF COUNT ‹ 1

THEN OF ‹ MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT „ 0)

DO
tempCF ‹ LSB(SRC);
DEST ‹ (DEST / 2) + (CF * 2SIZE);
CF ‹ tempCF;
tempCOUNT ‹ tempCOUNT – 1;

OD;
(* ROL and ROR instructions *)
SIZE ‹ OperandSize
CASE (determine count) OF

SIZE ‹ 8: tempCOUNT ‹ COUNT MOD 8;
SIZE ‹ 16: tempCOUNT ‹ COUNT MOD 16;
SIZE ‹ 32: tempCOUNT ‹ COUNT MOD 32;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT „ 0)

DO
tempCF ‹ MSB(DEST);
DEST ‹ (DEST * 2) + tempCF;
tempCOUNT ‹ tempCOUNT – 1;

OD;
ELIHW;
CF ‹ LSB(DEST);
IF COUNT ‹ 1

THEN OF ‹ MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

3-663

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

(* ROR instruction operation *)
WHILE (tempCOUNT „ 0)

DO
tempCF ‹ LSB(SRC);
DEST ‹ (DEST / 2) + (tempCF * 2SIZE);
tempCOUNT ‹ tempCOUNT – 1;

OD;
ELIHW;
CF ‹ MSB(DEST);
IF COUNT ‹ 1

THEN OF ‹ MSB(DEST) XOR MSB - 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-
bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and
PF flags are not affected.

Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

tsimo1

7-15

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca-
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruc-
tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

7.2.6. Bit and Byte Instructions

The bit and byte instructions operate on bit or byte strings. They are divided into four groups:

• Bit test and modify instructions.

Figure 7-11. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction

Example using AND, OR & SHL

• Copy bits 4-7 of BX to bits 8-11 of AX

AX = 0110 1011 1001 0110

BX = 1101 0011 1100 0001

1. Clear bits 8-11 of AX & all but bits 4-7 of BX using AND instructions

AX = 0110 0000 1001 0110 AND AX, F0FFh
BX = 0000 0000 1100 0000 AND BX, 00F0h

2. Shift bits 4-7 of BX to the desired position using a SHL instruction

AX = 0110 0000 1001 0110
BX = 0000 1100 0000 0000 SHL BX, 4

3. “Copy” bits of 4-7 of BX to AX using an OR instruction

AX = 0110 1100 1001 0110 OR AX, BX
BX = 0000 1100 0000 0000

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

MORE
ARITHMETIC
INSTRUCTIONS

More Arithmetic Instructions

• NEG: two’s complement negation of operand

• MUL: unsigned multiplication
Multiply AL with r/m8 and store product in AX

Multiply AX with r/m16 and store product in DX:AX

Multiply EAX with r/m32 and store product in EDX:EAX

Immediate operands are not supported.

CF and OF cleared if upper half of product is zero.

• IMUL: signed multiplication
Use with signed operands

More addressing modes supported

• DIV: unsigned division

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-506

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

IF DEST ‹ 0
THEN CF ‹ 0
ELSE CF ‹ 1;

FI;
DEST ‹ – (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF,
and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

tsimo1

3-496

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiply

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in the following table.

:

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending
on the operand size), with the high-order bits of the product contained in register AH, DX, or
EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared;
otherwise, the flags are set.

Operation

IF byte operation
THEN

AX ‹ AL * SRC
ELSE (* word or doubleword operation *)

IF OperandSize ‹ 16
THEN

DX:AX ‹ AX * SRC
ELSE (* OperandSize ‹ 32 *)

EDX:EAX ‹ EAX * SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they are set
to 1. The SF, ZF, AF, and PF flags are undefined.

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX ‹ AL * r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX ‹ AX * r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX ‹ EAX * r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

tsimo1

3-321

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX‹ AL * r/m byte

F7 /5 IMUL r/m16 DX:AX ‹ AX * r/m word

F7 /5 IMUL r/m32 EDX:EAX ‹ EAX * r/m doubleword

0F AF /r IMUL r16,r/m16 word register ‹ word register * r/m word

0F AF /r IMUL r32,r/m32 doubleword register ‹ doubleword register * r/m
doubleword

6B /r ib IMUL r16,r/m16,imm8 word register ‹ r/m16 * sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register ‹ r/m32 * sign-extended immediate
byte

6B /r ib IMUL r16,imm8 word register ‹ word register * sign-extended immediate
byte

6B /r ib IMUL r32,imm8 doubleword register ‹ doubleword register * sign-
extended immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register ‹ r/m16 * immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register ‹ r/m32 * immediate doubleword

69 /r iw IMUL r16,imm16 word register ‹ r/m16 * immediate word

69 /r id IMUL r32,imm32 doubleword register ‹ r/m32 * immediate doubleword

3-322

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands ‹ 1)
THEN IF (OperandSize ‹ 8)

THEN
AX ‹ AL * SRC (* signed multiplication *)
IF ((AH ‹ 00H) OR (AH ‹ FFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE IF OperandSize ‹ 16

THEN
DX:AX ‹ AX * SRC (* signed multiplication *)
IF ((DX ‹ 0000H) OR (DX ‹ FFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE (* OperandSize ‹ 32 *)

EDX:EAX ‹ EAX * SRC (* signed multiplication *)
IF ((EDX ‹ 00000000H) OR (EDX ‹ FFFFFFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
FI;

ELSE IF (NumberOfOperands ‹ 2)
THEN

temp ‹ DEST * SRC (* signed multiplication; temp is double DEST size*)
DEST ‹ DEST * SRC (* signed multiplication *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;

ELSE (* NumberOfOperands ‹ 3 *)

3-323

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)
DEST ‹ SRC1 * SRC2 (* signed multiplication *)
temp ‹ SRC1 * SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;
FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

tsimo1

3-194 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AX, DX:AX, or EDX:EAX registers (dividend) by the
source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size (dividend/divisor). See Table 3-19.

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

Operation

IF SRC ! 0

THEN #DE; (* divide error *)

FI;

IF OperandSize ! 8 (* word/byte operation *)

THEN

temp " AX / SRC;

IF temp # FFH

THEN #DE; (* divide error *) ;

ELSE

AL " temp;

AH " AX MOD SRC;

FI;

ELSE

IF OperandSize ! 16 (* doubleword/word operation *)

THEN

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8, with result stored in
AL " Quotient, AH " Remainder.

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16, with result stored in
AX " Quotient, DX " Remainder.

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32, with result stored in
EAX " Quotient, EDX " Remainder.

Table 3-19. DIV Action

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 $ 1

Vol. 2A 3-195

INSTRUCTION SET REFERENCE, A-M

temp ! DX:AX / SRC;

IF temp " FFFFH

THEN #DE; (* divide error *) ;

ELSE

AX ! temp;

DX ! DX:AX MOD SRC;

FI;

ELSE (* quadword/doubleword operation *)

temp ! EDX:EAX / SRC;

IF temp " FFFFFFFFH

THEN #DE; (* divide error *) ;

ELSE

EAX ! temp;

EDX ! EDX:EAX MOD SRC;

FI;

FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

3-196 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

INDEXED
ADDRESSING
MODES

Indexed Addressing

• Operands of the form: [ESI + ECX*4 + DISP]

• ESI = Base Register

• ECX = Index Register

• 4 = Scale factor

• DISP = Displacement

• The operand is in memory

• The address of the memory location is
ESI + ECX*4 + DISP

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-20

BASIC EXECUTION ENVIRONMENT

• Index—The value in a general-purpose register.

• Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 3-9 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.

The uses of general-purpose registers as base or index components are restricted in the following
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default segment.
In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Figure 3-9. Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

4

8

8-bit

16-bit

32-bit

Index Scale Displacement

*+ +

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + 20]

Data

Code

.

.

.

MOV…
20

Base + Displacement

+

1734

08A94068

08A94068

08A94088

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [ECX*4 + 08A94068]

Data

Code

.

.

.

MOV…
08A94068

Index*Scale + Displacement

+

2

08A94068

08A94070

*4

1734

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + ECX + 20]

Data

Code

.

.

.

MOV…
20

Base + Index + Displacement

+

2

08A94068

08A9408A1734

08A94068

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + ECX*4 + 20]

Data

Code

.

.

.

MOV…
20

Base + Index*Scale + Displacement

+

2

08A94068

08A940901734

08A94068

*4

Typical Uses for Indexed Addressing

• Base + Displacement
access character in a string or field of a record

access a local variable in function call stack

• Index*Scale + Displacement
access items in an array where size of item is 2, 4 or 8 bytes

• Base + Index + Displacement
access two dimensional array (displacement has address of array)

access an array of records (displacement has offset of field in a record)

• Base + (Index*Scale) + Displacement
access two dimensional array where size of item is 2, 4 or 8 bytes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

; File: index1.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

arr: dd 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ; ten 32-bit words
base: equ arr - 4

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of the array stored in arr.
 ; Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; arr[i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [ecx*4+arr], dword 5 ; arr[i] += 5
 inc ecx ; i++
 jmp loop1
done1:

 ; more idiomatic for an assembly language program
init2: mov ecx, 9 ; last array elt's index
loop2: add [ecx*4+arr], dword 5
 dec ecx
 jge loop2 ; again if ecx >= 0

 ; another way
init3: mov edi, base ; base computed by ld
 mov ecx, 10 ; for(i=10 ; i>0 ; i--)
loop3: add [edi+ecx*4], dword 5
 loop loop3 ; loop = dec ecx, jne

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:06:02 2003
linux3% nasm -f elf index1.asm
linux3% ld index1.o

linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *init2
Breakpoint 2 at 0x8048099
(gdb) break *init3
Breakpoint 3 at 0x80480ac
(gdb) break * alldone
Breakpoint 4 at 0x80480bf
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 0 1 2 3
0x80490dc <arr+16>: 4 5 6 7
0x80490ec <arr+32>: 8 9
(gdb) cont
Continuing.

Breakpoint 2, 0x08048099 in init2 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 5 6 7 8
0x80490dc <arr+16>: 9 10 11 12
0x80490ec <arr+32>: 13 14
(gdb) cont
Continuing.

Breakpoint 3, 0x080480ac in init3 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 10 11 12 13
0x80490dc <arr+16>: 14 15 16 17
0x80490ec <arr+32>: 18 19
(gdb) cont
Continuing.

Breakpoint 4, 0x080480bf in alldone ()
(gdb) x/10wd &arr
0x80490cc <arr>: 15 16 17 18
0x80490dc <arr+16>: 19 20 21 22
0x80490ec <arr+32>: 23 24
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:07:41 2003

; File: index2.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access 2 dimensional array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

 ; simulates a 2-dim array
twodim:
row1: dd 00, 01, 02, 03, 04, 05, 06, 07, 08, 09
row2: dd 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
 dd 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
 dd 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
 dd 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
 dd 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
 dd 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
 dd 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 dd 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
 dd 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

rowlen: equ row2 - row1

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of row 7. Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; tZRdim[7][i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
 mov eax, rowlen ; offset of twodim[7][0]
 mov edx, 7
 mul edx ; eax := eax * edx
 jc alldone ; 64-bit product is bad

loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [eax+4*ecx+twodim], dword 5
 inc ecx ; i++
 jmp loop1
done1:

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:19:22 2003
linux3% nasm -f elf index2.asm
linux3% ld index2.o
linux3%
linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *alldone
Breakpoint 2 at 0x80480a7
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &twodim
0x80490b4 <twodim>: 0 1 2 3
0x80490c4 <twodim+16>: 4 5 6 7
0x80490d4 <twodim+32>: 8 9
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 70 71 72 73
0x80491dc <row2+256>: 74 75 76 77
0x80491ec <row2+272>: 78 79
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Breakpoint 2, 0x080480a7 in done1 ()
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 75 76 77 78
0x80491dc <row2+256>: 79 80 81 82
0x80491ec <row2+272>: 83 84
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:20:35 2003

NEXT TIME

•  a bigger example

tyler simon

tyler simon
Subroutines

References

• Some figures and diagrams from IA-32 Intel
Architecture Software Developer's Manual, Vols 1-3

<http://developer.intel.com/design/Pentium4/manuals/>

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

