
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 01, SPRING 2013

tyler simon
Lecture 1, Fall 2014

tyler simon

tyler simon

TOPICS TODAY

•  Course overview

•  Levels of machines

•  Machine models: von Neumann & System Bus

•  Fetch-Execute Cycle

•  Base Conversion

COURSE OVERVIEW

LEVELS OF MACHINES

Computer Science View of the World

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

User
1

User
2

User
3

User
n

Application Programs

Operating System

Computer Hardware

 compiler assembler text editor database sys

...

39

•  Each virtual machine
layer is an abstraction of
the level below it.

•  The machines at each
level execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

•  Computer circuits
ultimately carry out the
work.

1.6 The Computer Level Hierarchy

40

•  Level 6: The User Level

–  Program execution and user interface level.

–  The level with which we are most familiar.

•  Level 5: High-Level Language Level

–  The level with which we interact when we write
programs in languages such as C, Pascal, Lisp, and
Java.

1.6 The Computer Level Hierarchy

41

•  Level 4: Assembly Language Level

–  Acts upon assembly language produced from
Level 5, as well as instructions programmed
directly at this level.

•  Level 3: System Software Level
–  Controls executing processes on the system.
–  Protects system resources.
–  Assembly language instructions often pass

through Level 3 without modification.

1.6 The Computer Level Hierarchy

42

•  Level 2: Machine Level

–  Also known as the Instruction Set Architecture
(ISA) Level.

–  Consists of instructions that are particular to the
architecture of the machine.

–  Programs written in machine language need no
compilers, interpreters, or assemblers.

1.6 The Computer Level Hierarchy

43

•  Level 1: Control Level
–  A control unit decodes and executes instructions

and moves data through the system.
–  Control units can be microprogrammed or

hardwired.
–  A microprogram is a program written in a low-

level language that is implemented by the
hardware.

–  Hardwired control units consist of hardware that
directly executes machine instructions.

1.6 The Computer Level Hierarchy

44

•  Level 0: Digital Logic Level
–  This level is where we find digital circuits (the

chips).
–  Digital circuits consist of gates and wires.
–  These components implement the mathematical

logic of all other levels.

1.6 The Computer Level Hierarchy

MACHINE MODELS

45

•  On the ENIAC, all programming was done at
the digital logic level.

•  Programming the computer involved moving
plugs and wires.

•  A different hardware configuration was needed
to solve every unique problem type.

1.7 The von Neumann Model

Configuring the ENIAC to solve a �simple� problem
required many days labor by skilled technicians.

46

•  Inventors of the ENIAC, John Mauchley and
J. Presper Eckert, conceived of a computer
that could store instructions in memory.

•  The invention of this idea has since been
ascribed to a mathematician, John von
Neumann, who was a contemporary of
Mauchley and Eckert.

•  Stored-program computers have become
known as von Neumann Architecture systems.

1.7 The von Neumann Model

47

•  Today�s stored-program computers have the
following characteristics:
–  Three hardware systems:

•  A central processing unit (CPU)
•  A main memory system
•  An I/O system

–  The capacity to carry out sequential instruction
processing.

–  A single data path between the CPU and main memory.
•  This single path is known as the von Neumann

bottleneck.

1.7 The von Neumann Model

48

•  This is a general
depiction of a von
Neumann system:

•  These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.7 The von Neumann Model

8

4.3 The Bus

9

•  A multipoint bus is shown below.
•  Because a multipoint bus is a shared resource,

access to it is controlled through protocols, which
are built into the hardware.

4.3 The Bus

FETCH EXECUTE CYCLE

49

•  The control unit fetches the next instruction from memory using
the program counter to determine where the instruction is located.

1.7 The von Neumann Model

50

•  The instruction is decoded into a language that the ALU
can understand.

1.7 The von Neumann Model

51

•  Any data operands required to execute the instruction
are fetched from memory and placed into registers within
the CPU.

1.7 The von Neumann Model

52

•  The ALU executes the instruction and places results in
registers or memory.

1.7 The von Neumann Model

BASE CONVERSION

4

2.1 Introduction

•  A bit is the most basic unit of information in a
computer.
–  It is a state of �on� or �off� in a digital circuit.
–  Sometimes these states are �high� or �low� voltage

instead of �on� or �off..�

•  A byte is a group of eight bits.
–  A byte is the smallest possible addressable unit of

computer storage.
–  The term, �addressable,� means that a particular byte can

be retrieved according to its location in memory.

5

•  A word is a contiguous group of bytes.
–  Words can be any number of bits or bytes.

–  Word sizes of 16, 32, or 64 bits are most common.

–  In a word-addressable system, a word is the smallest
addressable unit of storage.

•  A group of four bits is called a nibble.
–  Bytes, therefore, consist of two nibbles: a �high-order

nibble,� and a �low-order� nibble.

2.1 Introduction

6

2.2 Positional Numbering Systems

•  Bytes store numbers using the position of each
bit to represent a power of 2.
–  The binary system is also called the base-2 system.

–  Our decimal system is the base-10 system. It uses
powers of 10 for each position in a number.

–  Any integer quantity can be represented exactly using any
base (or radix).

7

•  The decimal number 947 in powers of 10 is:

•  The decimal number 5836.47 in powers of 10 is:

5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0
 + 4 × 10 -1 + 7 × 10 -2

9 × 10 2 + 4 × 10 1 + 7 × 10 0

2.2 Positional Numbering Systems

8

•  The binary number 11001 in powers of 2 is:

•  When the radix of a number is something other
than 10, the base is denoted by a subscript.
–  Sometimes, the subscript 10 is added for emphasis:

 110012 = 2510

 1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0

= 16 + 8 + 0 + 0 + 1 = 25

2.2 Positional Numbering Systems

15

•  Converting 190 to base 3...

–  First we take the number
that we wish to convert and
divide it by the radix in
which we want to express
our result.

–  In this case, 3 divides 190
63 times, with a remainder
of 1.

–  Record the quotient and the
remainder.

2.3 Converting Between Bases

16

•  Converting 190 to base 3...

–  63 is evenly divisible by 3.

–  Our remainder is zero, and
the quotient is 21.

2.3 Converting Between Bases

17

•  Converting 190 to base 3...

–  Continue in this way until
the quotient is zero.

–  In the final calculation, we
note that 3 divides 2 zero
times with a remainder of 2.

–  Our result, reading from
bottom to top is:

 19010 = 210013

2.3 Converting Between Bases

22

•  Using the multiplication
method to convert the
decimal 0.8125 to binary,
we multiply by the radix 2.
–  The first product carries

into the units place.

2.3 Converting Between Bases

23

•  Converting 0.8125 to binary . . .

–  Ignoring the value in the units
place at each step, continue
multiplying each fractional part by
the radix.

2.3 Converting Between Bases

24

•  Converting 0.8125 to binary . . .
–  You are finished when the

product is zero, or until you
have reached the desired
number of binary places.

–  Our result, reading from top to
bottom is:

 0.812510 = 0.11012

–  This method also works with
any base. Just use the target
radix as the multiplier.

2.3 Converting Between Bases

Converting Base 6 to Base 10

• 123.456 = ???.???10

1236 = 1 x 3610 + 2 x 610 + 3 x 110 = 5110

0.456 = 4 x 1/610 + 5 x 1/3610 = 0.805555...10

123.456 = 51.805555...10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6

• 754.9410 = 3254.5 35012 35012 35012...6
75410 = 116 x 2446 + 56 x 146 + 46 x 16 = ???6

754 ÷ 6 = 125 remainder 4

125 ÷ 6 = 20 remainder 5

 20 ÷ 6 = 3 remainder 2

 3 ÷ 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 1 = 75410

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6 (cont)

• 0.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

25

•  The binary numbering system is the most
important radix system for digital computers.

•  However, it is difficult to read long strings of binary
numbers -- and even a modestly-sized decimal
number becomes a very long binary number.
–  For example: 110101000110112 = 1359510

•  For compactness and ease of reading, binary
values are usually expressed using the
hexadecimal, or base-16, numbering system.

2.3 Converting Between Bases

BASES

Decimal Binary Octal Hexadecimal
0 0000! 0 0

1 0001! 1 1

2 0010! 2 2

3 0011! 3 3

4 0100! 4 4

5 0101! 5 5

6 0110! 6 6

7 0111! 7 7

8 1000! 10 8

9 1001! 11 9

10 1010! 12 A

11 1011! 13 B

12 1100! 14 C

13 1101! 15 D

14 1110! 16 E
15 1111! 17 F

26

•  The hexadecimal numbering system uses the
numerals 0 through 9 and the letters A through F.
–  The decimal number 12 is C16.
–  The decimal number 26 is 1A16.

•  It is easy to convert between base 16 and base 2,
because 16 = 24.

•  Thus, to convert from binary to hexadecimal, all
we need to do is group the binary digits into
groups of four.

A group of four binary digits is called a hextet

2.3 Converting Between Bases

27

•  Using groups of hextets, the binary number
110101000110112 (= 1359510) in hexadecimal is:

•  Octal (base 8) values are derived from binary by
using groups of three bits (8 = 23):

Octal was very useful when computers used six-bit words.

If the number of bits is not a
multiple of 4, pad on the left
with zeros.

2.3 Converting Between Bases

NEXT TIME

•  Representing numbers

•  Representing negative numbers

•  Floating point numbers (briefly)

•  Characters and strings

