CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

Lecture 1, Fall 2014

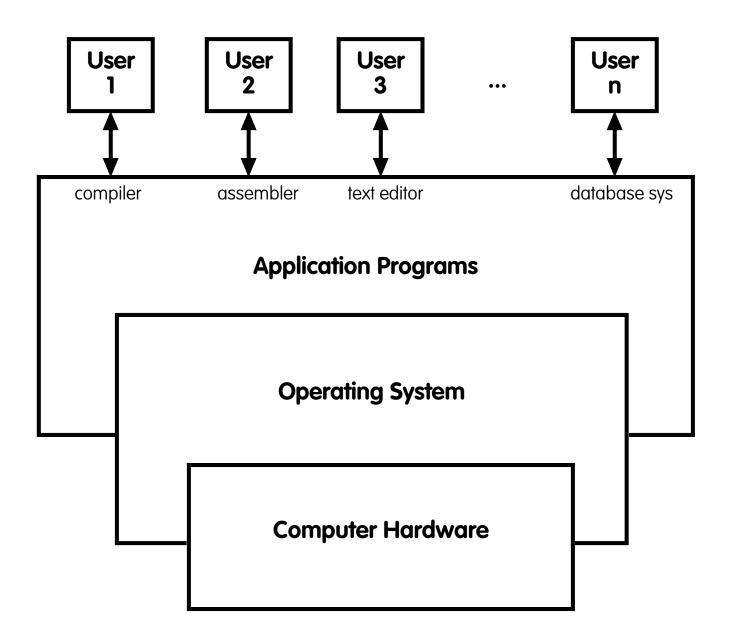
TOPICS TODAY

- Course overview
- Levels of machines
- Machine models: von Neumann & System Bus
- Fetch-Execute Cycle
- Base Conversion

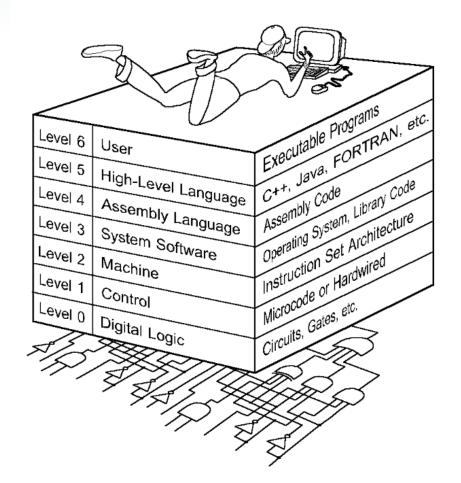
COURSE OVERVIEW

LEVELS OF MACHINES

Computer Science View of the World



- Each virtual machine layer is an abstraction of the level below it.
- The machines at each level execute their own particular instructions, calling upon machines at lower levels to perform tasks as required.
- Computer circuits ultimately carry out the work.



- Level 6: The User Level
 - Program execution and user interface level.
 - The level with which we are most familiar.
- Level 5: High-Level Language Level
 - The level with which we interact when we write programs in languages such as C, Pascal, Lisp, and Java.

- Level 4: Assembly Language Level
 - Acts upon assembly language produced from Level 5, as well as instructions programmed directly at this level.
- Level 3: System Software Level
 - Controls executing processes on the system.
 - Protects system resources.
 - Assembly language instructions often pass through Level 3 without modification.

- Level 2: Machine Level
 - Also known as the Instruction Set Architecture (ISA) Level.
 - Consists of instructions that are particular to the architecture of the machine.
 - Programs written in machine language need no compilers, interpreters, or assemblers.

- Level 1: Control Level
 - A *control unit* decodes and executes instructions and moves data through the system.
 - Control units can be *microprogrammed* or *hardwired*.
 - A microprogram is a program written in a lowlevel language that is implemented by the hardware.
 - Hardwired control units consist of hardware that directly executes machine instructions.

- Level 0: Digital Logic Level
 - This level is where we find digital circuits (the chips).
 - Digital circuits consist of gates and wires.
 - These components implement the mathematical logic of all other levels.

MACHINE MODELS

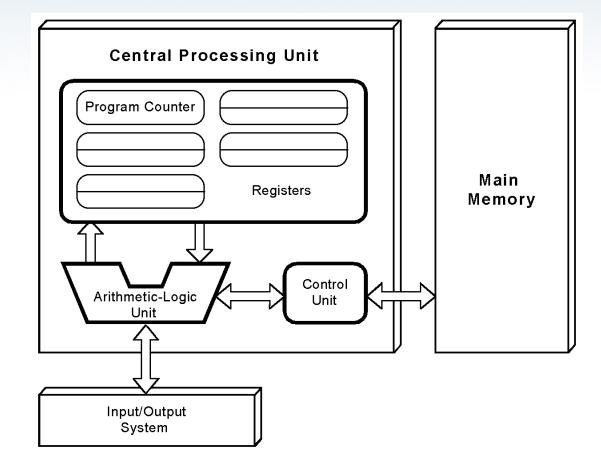
- On the ENIAC, all programming was done at the digital logic level.
- Programming the computer involved moving plugs and wires.
- A different hardware configuration was needed to solve every unique problem type.

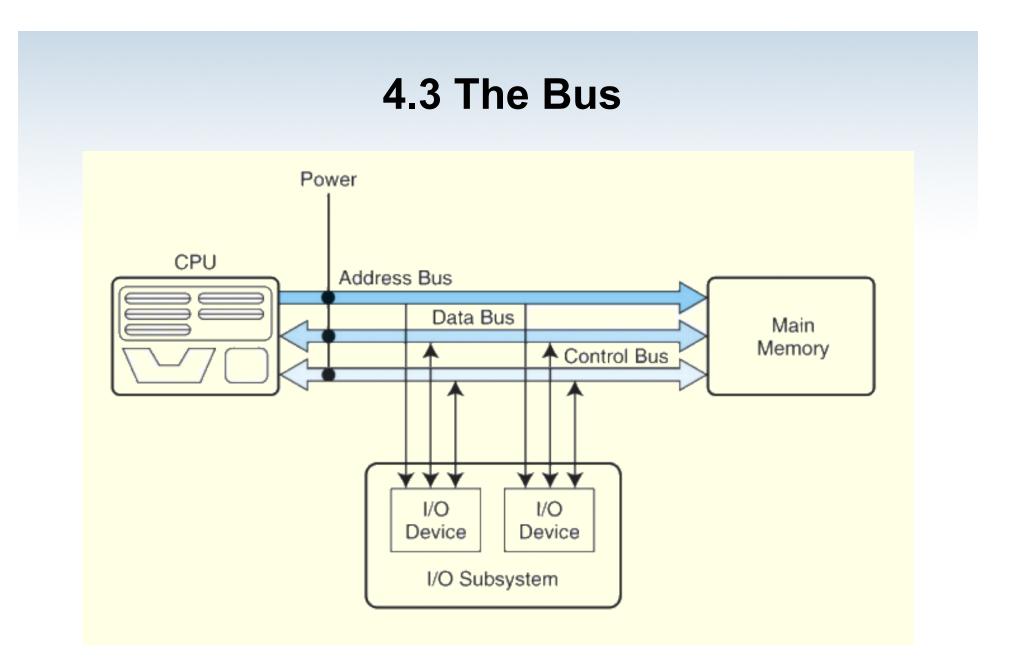
Configuring the ENIAC to solve a "simple" problem required many days labor by skilled technicians.

- Inventors of the ENIAC, John Mauchley and J. Presper Eckert, conceived of a computer that could store instructions in memory.
- The invention of this idea has since been ascribed to a mathematician, John von Neumann, who was a contemporary of Mauchley and Eckert.
- Stored-program computers have become known as von Neumann Architecture systems.

- Today's stored-program computers have the following characteristics:
 - Three hardware systems:
 - A central processing unit (CPU)
 - A main memory system
 - An I/O system
 - The capacity to carry out sequential instruction processing.
 - A single data path between the CPU and main memory.
 - This single path is known as the *von Neumann bottleneck*.

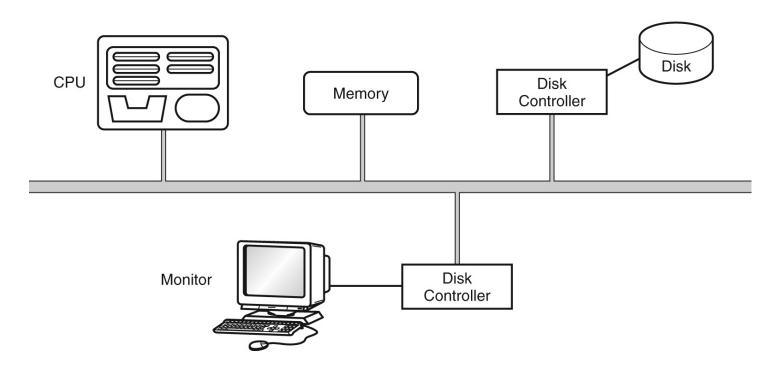
- This is a general depiction of a von Neumann system:
- These computers employ a fetchdecode-execute cycle to run programs as follows





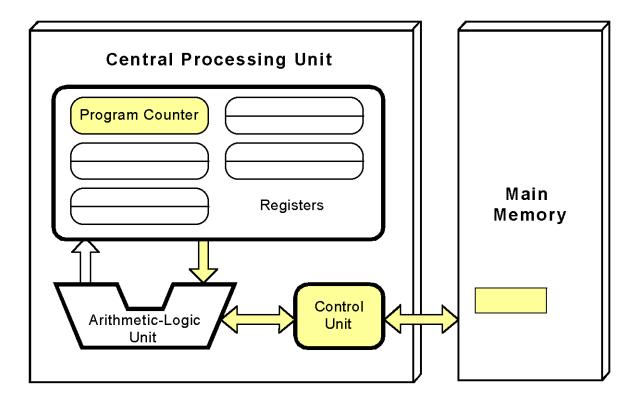
4.3 The Bus

- A multipoint bus is shown below.
- Because a multipoint bus is a shared resource, access to it is controlled through protocols, which are built into the hardware.

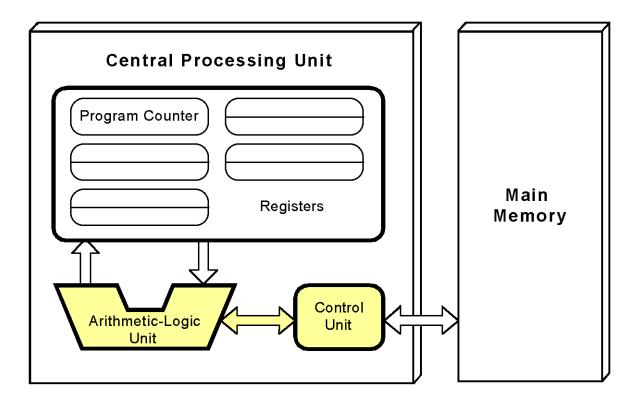


FETCH EXECUTE CYCLE

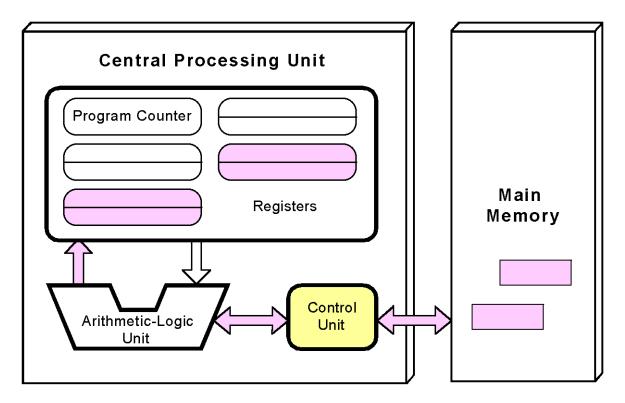
• The control unit fetches the next instruction from memory using the program counter to determine where the instruction is located.



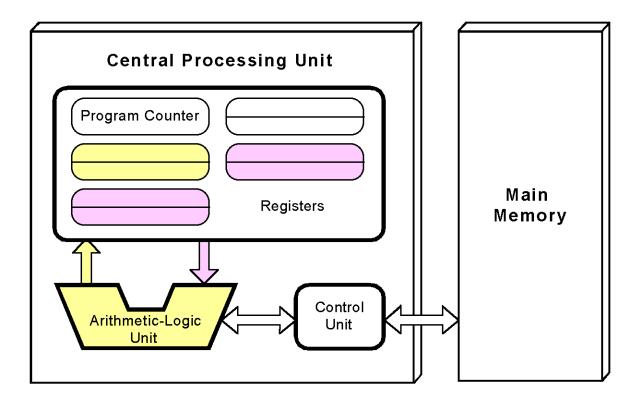
• The instruction is decoded into a language that the ALU can understand.



 Any data operands required to execute the instruction are fetched from memory and placed into registers within the CPU.



• The ALU executes the instruction and places results in registers or memory.



BASE CONVERSION

2.1 Introduction

- A *bit* is the most basic unit of information in a computer.
 - It is a state of "on" or "off" in a digital circuit.
 - Sometimes these states are "high" or "low" voltage instead of "on" or "off.."
- A byte is a group of eight bits.
 - A byte is the smallest possible *addressable* unit of computer storage.
 - The term, "addressable," means that a particular byte can be retrieved according to its location in memory.

2.1 Introduction

- A *word* is a contiguous group of bytes.
 - Words can be any number of bits or bytes.
 - Word sizes of 16, 32, or 64 bits are most common.
 - In a word-addressable system, a word is the smallest addressable unit of storage.
- A group of four bits is called a *nibble*.
 - Bytes, therefore, consist of two nibbles: a "high-order nibble," and a "low-order" nibble.

2.2 Positional Numbering Systems

- Bytes store numbers using the position of each bit to represent a power of 2.
 - The binary system is also called the base-2 system.
 - Our decimal system is the base-10 system. It uses powers of 10 for each position in a number.
 - Any integer quantity can be represented exactly using any base (or *radix*).

2.2 Positional Numbering Systems

• The decimal number 947 in powers of 10 is:

 $9 \times 10^{2} + 4 \times 10^{1} + 7 \times 10^{0}$

• The decimal number 5836.47 in powers of 10 is:

 $5 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 6 \times 10^{0} + 4 \times 10^{-1} + 7 \times 10^{-2}$

2.2 Positional Numbering Systems

• The binary number 11001 in powers of 2 is:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

= 16 + 8 + 0 + 0 + 1 = 25

- When the radix of a number is something other than 10, the base is denoted by a subscript.
 - Sometimes, the subscript 10 is added for emphasis:

$$11001_2 = 25_{10}$$

Converting 190 to base 3...

- First we take the number that we wish to convert and divide it by the radix in which we want to express our result.
- In this case, 3 divides 190
 63 times, with a remainder of 1.
- Record the quotient and the remainder.

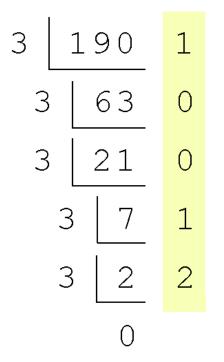
Converting 190 to base 3...

- 63 is evenly divisible by 3.
- Our remainder is zero, and the quotient is 21.

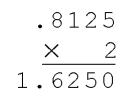
Converting 190 to base 3...

- Continue in this way until the quotient is zero.
- In the final calculation, we note that 3 divides 2 zero times with a remainder of 2.
- Our result, reading from bottom to top is:

 $190_{10} = 21001_3$



- Using the multiplication method to convert the decimal 0.8125 to binary, we multiply by the radix 2.
 - The first product carries into the units place.



Converting 0.8125 to binary . . .

	× 2
 Ignoring the value in the units 	1.6250
place at each step, continue	
multiplying each fractional part by	.6250
the radix.	<u>× 2</u>
	1 2500

1	.2500
	.2500
	× 2
0	.5000

.8125

Converting 0.8125 to binary . . .

- You are finished when the product is zero, or until you have reached the desired number of binary places.
- Our result, reading from top to bottom is:

 $0.8125_{10} = 0.1101_2$

 This method also works with any base. Just use the target radix as the multiplier.

	.8125
	<u>× 2</u>
1	× 2 6250
	.6250
	× 2 2500
1	2500
	.2500 × 2
0	× 2 5000
	.5000 <u>× 2</u>
1	.0000

Converting Base 6 to Base 10

• $123.45_6 = ????_{10}$

 $123_6 = 1 \times 36_{10} + 2 \times 6_{10} + 3 \times 1_{10} = 51_{10}$

 $0.45_6 = 4 \times 1/6_{10} + 5 \times 1/36_{10} = 0.805555..._{10}$

 $123.45_6 = 51.805555..._{10}$

Converting Base 10 to Base 6

• $754.94_{10} = 3254.5 35012 35012 35012..._{6}$

 $754_{10} = 11_6 \times 244_6 + 5_6 \times 14_6 + 4_6 \times 1_6 = ???_6$

754 ÷ 6 = 125 remainder 4

 $125 \div 6 = 20$ remainder 5

- $20 \div 6 = 3$ remainder 2
 - $3 \div 6 = 0$ remainder 3

 $3254_6 = 3 \times 216_{10} + 2 \times 36_{10} + 5 \times 6_{10} + 4 \times 1 = 754_{10}$

Converting Base 10 to Base 6 (cont)

•
$$0.94_{10} = ???.??_{6}$$

0.94 × 6 =	5.64	> 5
0.64 × 6 =	3.84	> 3
0.84 × 6 =	5.04	> 5
0.04 × 6 =	0.24	> 0
0.24 x 6 =	1.44	> 1
0.44 x 6 =	2.64	> 2
0.64 x 6 =	3.84	> 3

 $0.94_{10} = 0.5 35012 35012 35012..._{6}$

 $5/6 + 3/36 + 5/216 + 0 + 1/6^5 + 2/6^6 = 0.939986282..._{10}$

- The binary numbering system is the most important radix system for digital computers.
- However, it is difficult to read long strings of binary numbers -- and even a modestly-sized decimal number becomes a very long binary number.

- For example: $11010100011011_2 = 13595_{10}$

• For compactness and ease of reading, binary values are usually expressed using the hexadecimal, or base-16, numbering system.

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- The hexadecimal numbering system uses the numerals 0 through 9 and the letters A through F.
 - The decimal number 12 is C_{16} .
 - The decimal number 26 is $1A_{16}$.
- It is easy to convert between base 16 and base 2, because 16 = 2⁴.
- Thus, to convert from binary to hexadecimal, all we need to do is group the binary digits into groups of four.

A group of four binary digits is called a hextet

• Using groups of hextets, the binary number 11010100011011_2 (= 13595_{10}) in hexadecimal is:

0011	0101	0001	1011
3	5	1	В

If the number of bits is not a multiple of 4, pad on the left with zeros.

Octal (base 8) values are derived from binary by using groups of three bits (8 = 2³):

011 <mark>010</mark> 100 <mark>011</mark> 011 3 2 4 3 3

Octal was very useful when computers used six-bit words.

NEXT TIME

- Representing numbers
- Representing negative numbers
- Floating point numbers (briefly)
- Characters and strings