
CMSC 313, Computer Organization & Assembly Language Programming!
Spring 2013!

Homework 5: Stack Machine

Due: Tuesday, May 14, 2013

The Stack Machine

See: http://umbc.edu/~chang/cs313/hw5.circ

For this assignment you will construct the instruction decoder for a stack machine. The stack machine
has 16 registers organized as a stack. These 4-bit registers are numbered st00 through st15. As in
assembly language programming, the bottom of the stack has the larger address. That is, the bottom of the
stack is st15 and the top of the stack grows towards st00. The stack has a counter that keeps track of the
register that is the current top of the stack.

During each cycle, the top two items of the stack are available simultaneously. In this design, the top
of the stack is routed directly to Port A of the ALU and the register just below the top of the stack is
routed to Port B of the ALU.

The stack counter can be instructed to either decrement (e.g., to PUSH), increment (to POP), stay the
same, or reset to 0, according to the following:

 sc1 sc0 effect
 0 0 reset to zero
 0 1 increment (POP)
 1 0 no change
 1 1 decrement (PUSH)

The contents of the stack can be modified using the 4-bit wide WRITE line. The data on the WRITE
line can be written to either the current top of the stack, the register above it or the register below it. The
register being modified is specified by the write select lines (WSEL):

 wsel1 wsel0 effect
 0 0 write to current top
 0 1 write to register below
 1 0 no write
 1 1 write to register above

The WRITE line is connected to the output of a 4-to-1 multiplexer (MUX). This multiplexer chooses
one of: the output of the ALU, the top of the stack or the immediate value embedded in the stack
machine’s instruction (see below). The fourth input line is not used:

 MUX 1 MUX0 input selected
 0 0 output of ALU
 0 1 top of the stack
 1 0 immediate operand
 1 1 not used

The ALU in this circuit is very similar to the one in Homework 3. The one exception is that the
subtraction instruction subtracts Port A from Port B, rather than vice versa. (Also, the circuitry is
implemented using addition and subtraction modules in Logisim instead of gates.) As in Homework 3, the
ALU function is selected via two control lines, d1 and d0:

 d1 d0 effect
 0 0 add Port A and Port B
 0 1 subtract Port A from Port B
 1 0 decrement Port A
 1 1 increment Port A

Finally, this stack machine has an “output” of 4 LED’s. When the LED’s control line is set to 1, the 4-
bit value at the top of the stack is displayed.

The Instruction Set

With these controls in place, we can construct an instruction set for our stack machine. For example, we
can implement an ADD instruction that pops the top two items off the stack and places their sum at the
top of the stack. To accomplish this task, we can set the following values for the control lines:

! MUX1 MUX0 = 0 0 output of ALU
 sc1 sc0 = 0 1 add 1 (pop)
 wsel1 wsel0 = 0 1 write to register below top of stack
 d1 d0 = 0 0 tell ALU to ADD
 LED = 0 don’t display

For example, if the current top of the stack is register st05 and the registers st05 and st06 hold 9 and 4
(respectively), then after the ADD instruction, the top of the stack is register st06 and st06 will hold the
value 13. (The st05 register will still hold the value 9, but that does not matter since we do not need to
actually erase values that are popped off the stack.)

Your assignment is to implement the following instructions for our stack machine:

ADD! Pop the top two items off the top of the stack and push their sum.
The resulting stack has one less item.

SUB! Pop the top two items off the top of the stack and push their difference.
The resulting stack has one less item.

DEC! Reduce the value at the top of the stack by 1.
The resulting stack has the same number of items.

INC! Increase the value at the top of the stack by 1.
The resulting stack has the same number of items.

DUP! Read the top of the stack and push this value on the stack. The top of the stack has been
“duplicated”. The resulting stack has one more item.

MOV! Store the given immediate value in the top of the stack.
The resulting stack has the same number of items.

PUSH! Push the given immediate value in the top of the stack.
The resulting stack has one more item.

DROP! Remove the top of the stack.
The resulting stack has one less item.

SHOW! Display the value in the top of the stack on the LED’s. This is the only instruction that uses
the LED’s. The LED should be off in all other instructions.
The resulting stack has the same number of items.

RESET!Store 0 in the stack counter.

The op code for each instruction is given in the table on the next page. Each instruction takes 8 bits.
The most significant 4 bits (i7, i6, i5, i4) specifies the instruction. The remaining 4 bits (i3 i2 i1 i0) specify
the immediate operand. Only two instructions use the immediate operand: PUSH and MOV. For example,
the op code for “PUSH 3” is 1010 0011 = A3.

Your Assignment

Your assignment is to complete the instruction table on the next page by specifying the values that must
be placed on the control lines to accomplish the remaining instructions (ADD is already done for you).
Next, use the Karnaugh maps provided to simplify the Boolean formula for each control line. Clearly
indicate your Boolean formula for each control line.

Finally, implement the resulting circuit in Logisim. You just need to add circuitry to the “Instruction
Decoder” module in the given circuit (http://umbc.edu/~chang/cs313/hw5.circ). You do
not need to do any other rewiring.

What to submit

In class on Tuesday May 14, turn in your truth table and Karnaugh maps on paper. Make copies of
these, if you still need them to implement your circuit in Logisim.

In Logisim, save the circuit file, then transfer the file to your account on GL. Finally, submit the
circuit file using the submit command. The name of this assignment is hw5, so your submit command
should look something like:

! submit cs313 hw5 hw5.circ

submit cmsc313 hw5 hw5.circ

CMSC 313 Homework 5, Truth Table

i7 i6 i5 i4 MUX)1 MUX)0 SC)1 SC)0 WSEL)1 WSEL)0 ALU)d1 ALU)d0 LED

ADD 0 0 0 0

SUB 0 0 0 1

DEC 0 0 1 0

INC 0 0 1 1

X 0 1 0 0 d d d d d d d d d

X 0 1 0 1 d d d d d d d d d

X 0 1 1 0 d d d d d d d d d

X 0 1 1 1 d d d d d d d d d

DUP 1 0 0 0

MOV 1 0 0 1

PUSH 1 0 1 0

DROP 1 0 1 1

SHOW 1 1 0 0

RESET 1 1 0 1

X 1 1 1 0 d d d d d d d d d

X 1 1 1 1 d d d d d d d d d

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

MUX 1

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

MUX 0

SC1

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

SC0

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

WSEL 1

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

WSEL 0

ALU d1

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

ALU d0

AB# A#
CD# 00# 01# 11# 10#

00#

0# 4# 12# 8#

01#

1#
#

5# 13# 9#

####D#

C##

11#

3# 7# 15# 11#

10#

2# 6# 14# 10#

#
B#

LED

