Multirate Signal Processing* Tutorial using MATLAB**

By, Deborah Goshorn dgoshorn@cs.ucsd.edu

I. Signal processing backgroundII. Downsample ExampleIII. Upsample Example

* Multrate signal processing is used for the practical applications in signal processing to save costs, processing time, and many other practical reasons.

** MATLAB is an industry standard software which performed all computations and corresponding figures in this tutorial

I. Signal processing background

Receive an analog signal

- Receive an analog signal at 5 Hz (as pictured below left, there are 5 wave cycles in one second.)
- The highest frequency component (5 Hz) of the signal is called the signal's <u>bandwidth</u>, BW, since in the examples in this presentation, the minimum frequency component is OHz.
- This signal can be represented in two ways:

Add high frequency components

Sampling the signal: Nyquist Rate

• In order to sample the signal without losing information, use a sampling rate (S_R) of at least the Nyquist Rate (N_R), which is 2 x BW of the received analog signal.

Sampling the signal: Nyquist Rate

Since Bandwidth BW = 15 Hz,

the Nyquist Rate N_R = 2 x 15Hz = 30Hz.

Sampling the signal: Nyquist Freq

The Nyquist Frequency (N_F) is equal to half of the sampling rate (S_R) . The N_F must be equal to or greater than the bandwidth BW of the desired signal to reconstruct.

II. Downsample Example

Recall, our original signal at 5Hz...

0.6

0.2

0.4

Time (sec)

0

0.8

0.8

0.8

1

0.6

1

1. Original 0.5 Signal Value 5 Hz signal 0 **BW** = 5 Hz -0.5 0 0.2 0.4 Time (sec) 2. We added 2 10 & 15 Hz Signal Value components! **BW** = 15 Hz 0.4 0.6 Time (sec) 0 0.2 3. Then we 2 sampled at Signal Value **S**_{R1} = 40Hz **BW** = 15 Hz

Resample the sampled signal: downsampling

<u>Downsample by 4</u> means to retain only every 4th sample

Nyquist Freq < Bandwidth 🟵

Cannot recover original signal bandwidth, since new Nyquist Frequency (5Hz) is less than the desired signal bandwdidth BW (15Hz).

Is the original 5Hz signal recoverable? It should be, since N_{F2} ≥ BW 5 Hz

Why 5Hz signal not recoverable: High Frequency band causes aliasing when downsampled

High frequency band will wrap down to OHz when downsampled

Why 5Hz signal not recoverable: Aliasing Effects

Due to the **high frequency** components at 10Hz and 15Hz that show up at 0Hz when the signal is **downsampled**, the 5Hz component is **not recoverable**.

... unless we remove the high frequency components before downsampling.

How to Remove the High Frequency components before downsampling using a low-pass filter

 A low-pass filter (LPF) removes high frequency components by only letting low frequency components pass through.

It removes the jagged edges that were due to high frequencies.

Proof in the pudding: No more aliasing effects when using low pass filter!

The original 5Hz signal is successfully recovered!

Proof in the pudding: LPF+downsampling <==> multirate polyphase filter resampling

* MATLAB is an industry standard software which performed all computations and corresponding figures in this presentation

III. Upsampling example

Assume our original signal at 5Hz...

Original
 Hz signal

Nyquist Rate $N_R = 2 \times BW$ 5Hz = 10Hz, so sample at sampling rate $S_R = 15$ Hz

Resample the sampled signal: upsampling

If you need to increase the number of samples in a given time by a factor of 5, you **upsample** by 5 (**insert** 5-1=4 **zeros between each sample**).

Upsampled signal in frequency representation

Upsampling causes aliasing in higher frequencies

Upsampling causes copies of the original 5Hz component at multiples of original sampling rate, 15Hz, plus/minus 5Hz Mirror Images at:

How do we remove these extra high frequency components?

How to remove the extra high frequency components caused by upsampling using a low-pass filter

Low pass filter removes these extra high frequency components

Proof in the pudding: No more aliasing effects when using low pass filter!

All high frequency copies of the 5Hz signal are removed!

