FIR FILTER SCALING

FIR Filter Example

• Use reduction technique and add all terms in a large tree for FIR structures which add delayed products into an output sum

B. Baas, © 2008

EEC 281, Winter 2008

FIR Filter Example

• Remove zeroed terms

B. Baas, © 2008

EEC 281, Winter 2008

211

FIR Filter Example

 Add with a single carry-save adder structure similar to how multiplier partialproducts are reduced

B. Baas, © 2008

EEC 281, Winter 2008

212

FIR Filter Example

• Complete addition with a carry-propagate adder

B. Baas, © 2008

213

FIR Filter HW Reduction

- If we can scale coefficients all by the same amount
 - Frequency response unchanged
 - Overall gain change
 - May be possible to reduce filter's complexity significantly
 - Must watch
 - Overflow
 - Quantization noise

B. Baas, © 2008

EEC 281, Winter 2008

214

FIR Filter Scaling

• If coeffs = [9 18 45 18 9] note that 0.889 x coeffs = [8 16 40 16 8]

B. Baas, © 2008

EEC 281, Winter 2008

FIR Filter Scaling

• Often, scaling of a filter can be accommodated or reversed elsewhere in the signal path

EEC 281, Winter 2008

B. Baas, © 2008

216

FIR Output Range

- Worst-case inputs: maximum pos/neg samples
 - signs match coeff signs
 - signs opposite coeff signs
- Handling large peak-to-average ratios
 - Calculate full range output (more hardware)
 - Deal with large possible peaks
 - Saturate
 - Overflow (might be risky!)
 - Compression

B. Baas, © 2008 EEC 281, Winter 2008