Filter Coefficient Design

- Many algorithms to find the coefficients for a digital (or analog) filter
 - Butterworth
 - Chebyshev
 - Bilinear transformation
 - Elliptic
- Some specify no ripple in the pass band or the stop band

B. Baas, © 2008

188

Parks-McClellan Method

EEC 281, Winter 2008

- Parks-McClellan method is a popular method
 - Published in the early 70s
 - Iterative
 - Computationally efficient
 - Works by specifying length of filter and frequency/magnitude pairs
 - See Oppenheim & Schafer for a thorough discussion

B. Baas, © 2008 EEC 281, Winter 2008 18

Filter Specification

- Filter specifications are frequently given in dB as min/max attenuation/ripple over frequency regions
- Ex:
 - Low-pass filter
 - Maximum +/- 4dB ripple in passband
 - Sampling frequency is 100 MHz
 - Passband from DC to 12.5 MHz
 - Minimum attenuation 22dB from 19 MHz to 25 MHz

B. Baas, © 2008 EEC 281, Winter 2008

Example Filter

190

- Example filter
 - Low-pass
 - frequencies specified as fractions of π : [0 0.25 0.30 1];
 - corresponding amplitudes: [1 1 0 0];
 - Don't care about transition band between 0.25 pi and 0.30 pi
 - Use remez() function in matlab

B. Baas, © 2008 EEC 281, Winter 2008 191

Example 21-tap Filter

- coeffs = $remez(20, [0 \ 0.25 \ 0.30 \ 1], [1]$ 0]);
- Notice remez function's first argument is the number of desired taps minus 1
- remez() for filter design. >> help remez to get more information on a matlab function
- To plot the coefficients, use stem(-10:10, coeffs);

B. Baas, © 2008 EEC 281, Winter 2008

Example Filter Coefficients

- Coefficients of 21-tap filter
- Note sinc() shape in time domain
- Remember this is a low-pass which is a rect() in the frequency domain

196

B. Baas, © 2008

EEC 281, Winter 2008