
Digital Design:
An Embedded Systems
Approach Using Verilog

Chapter 4

Sequential Basics

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

Digital Design — Chapter 4 — Sequential Basics 2

Sequential Basics

 Sequential circuits

 Outputs depend on current inputs and
previous inputs

 Store state: an abstraction of the history of
inputs

 Usually governed by a periodic clock
signal

Verilog

Digital Design — Chapter 4 — Sequential Basics 3

D-Flipflops

 1-bit storage element

 We will treat it as a basic component

 Other kinds of flipflops

 SR (set/reset), JK, T (toggle)

Verilog

Digital Design — Chapter 4 — Sequential Basics 4

Registers

 Store a multi-bit encoded value
 One D-flipflop per bit

 Stores a new value on
each clock cycle

wire [n:0] d;
reg [n:0] q;
...

always @(posedge clk)
q <= d;

event list

nonblocking
asignment

n

n n

n

Verilog

Digital Design — Chapter 4 — Sequential Basics 5

Pipelines Using Registers
Total delay = Delay1 + Delay2 + Delay3

Clock period = Delay1 + Delay2 + Delay3

Interval between outputs > Total delay

Clock period = max(Delay1, Delay2, Delay3)

Total delay = 3 × clock period

Interval between outputs = 1 clock period

combin-

ational

circuit 1

combin-

ational

circuit 2

combin-

ational

circuit 3

combin-

ational

circuit 1

combin-

ational

circuit 2

combin-

ational

circuit 3

Verilog

6

Pipeline Example

 Compute the average of corresponding
numbers in three input streams

 New values arrive on each clock edge

module average_pipeline (output reg signed [0:13] avg,
input signed [0:13] a, b, c,

wire signed [0:14] a_plus_b;

Wire signed [0:15] sum;

wire signed [0:22] sum_div_3;
reg signed [0:14] saved_a_plus_b

Reg signed [0:13] saved_c

Reg [0:15] saved_sum;
...

input clk);

Verilog

Digital Design — Chapter 4 — Sequential Basics 7

Pipeline Example

...

assign a_plus_b = a + b;

always @(posedge clk) begin // Pipeline register 1
saved_a_plus_b <= a_plus_b;
saved_c <= c;

end

assign sum = saved_a_plus_b + saved_c;

always @(posedge clk) // Pipeline register 2
saved_sum <= sum;

assign sum_div_3 = saved_sum * 7'b0101010;

always @(posedge clk) // Pipeline register 3
avg <= sum_div_3;

endmodule

Verilog

Blockdiagram

Digital Design — Chapter 4 — Sequential Basics 8

a+b

Divide

by 3

Saved a+b

a+b+c

Saved c

