
AN APPROACH TO LOW-POWER, HIGH-PERFORMANCE,

FAST FOURIER TRANSFORM PROCESSOR DESIGN

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Bevan M. Baas

February 1999

c© Copyright by Bevan M. Baas 1999

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

G. Leonard Tyler
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Teresa H. Meng

Approved for the University Committee on Graduate Studies:

iii

Abstract

The Fast Fourier Transform (FFT) is one of the most widely used digital signal process-

ing algorithms. While advances in semiconductor processing technology have enabled the

performance and integration of FFT processors to increase steadily, these advances have

also caused the power consumed by processors to increase as well. This power increase has

resulted in a situation where the number of potential FFT applications limited by maximum

power budgets—not performance—is significant and growing.

We present the cached-FFT algorithm which explicitly caches data from main memory

using a much smaller and faster memory. This approach facilitates increased performance

and, by reducing communication energy, increased energy-efficiency.

Spiffee is a 1024-point, single-chip, 460,000-transistor, 40-bit complex FFT processor

designed to operate at very low supply voltages. It employs the cached-FFT algorithm

which enables the design of a well-balanced, nine-stage pipeline. The processor calculates

a complex radix-2 butterfly every cycle and contains unique hierarchical-bitline SRAM and

ROM memories which operate well in both standard and low supply voltage, low threshold-

voltage environments. The processor’s substrate and well nodes are connected to chip pads,

accessible for biasing to adjust transistor thresholds.

Spiffee has been fabricated in a standard 0.7 µm (Lpoly = 0.6 µm) CMOS process and

is fully functional on its first fabrication. At a supply voltage of 1.1 V, Spiffee calculates a

1024-point complex FFT in 330 µsec, while dissipating 9.5 mW—resulting in an adjusted

energy-efficiency more than 16 times greater than that of the previously most efficient FFT

processor. At a supply voltage of 3.3 V, it operates at 173 MHz—a clock rate 2.6 times

faster than the previously fastest.

iv

Acknowledgments

As with most large projects, this research would not have been possible without considerable

guidance and support. I would like to acknowledge those who have enabled me to complete

this work and my years of graduate study.

To Professor Len Tyler, my principal adviser, I am deeply indebted. I have learned a

great deal from him in technical matters, in improving my written communication skills,

and in a wide variety of areas through his consistent mentoring as my Ph.D. adviser.

I thank Professor Kunle Olukotun for serving as my associate adviser, for encouragement

and advice, and for many enlightening discussions.

To Professor Teresa Meng, who also served as my adviser during my M.S., I express my

sincere gratitude for the valuable guidance she has provided.

During my first several years of graduate school, I worked under the supervision of the

late Professor Allen Peterson. He introduced me to the study of high-performance digital

signal processors and developed my interest in them. He is sorely missed.

I especially thank Professors Tyler, Olukotun, and Meng for serving as readers of this

dissertation. I also thank Professors Tyler, Olukotun, Don Cox, and Thomas Cover for

serving on my Oral Examination Committee.

I am deeply indebted to Jim Burr who first introduced me to the study of FFT pro-

cessors, taught me much about low-power computation, and mentored me on a wide vari-

ety of research issues. Masataka Matsui answered countless circuit and layout questions,

and I thank him for passing along some of his knowledge. Other colleagues in the ULP

group have helped me tremendously at various times. I thank Yen-Wen Lu for cheerfully

helping when asked, Vjekoslav Svilan for frequent assistance and for being a great golf

partner, and Gerard Yeh for many valuable discussions. Other members of STARLab and

the EE Department from whose interactions I have benefitted significantly include: Mark

Horowitz, Ivan Linscott, Ely Tsern, Jim Burnham, Kong Kritayakirana, Jawad Nasrullah,

v

Snežana Maslaković, Weber Hoen, Karen Huyser, Edgar Holmann, Mitch Oslick, Dan Wein-

lade, Birdy Amrutur, and Gu-Yeon Wei. I am grateful for the administrative assistance

given by Doris Reed, Marli Williams, and Sieglinde Barsch.

In addition, I would like to acknowledge those who have supported my work financially.

My graduate education was largely supported by: a National Science Foundation Fellowship,

a NASA Graduate Student Research Program Fellowship, and a GE Foundation Scholarship

through the American Indian Science and Engineering Society. Additional support was

provided by a Stanford University School of Engineering Fellowship.

I thank MOSIS for providing the fabrication of the Spiffee1 chip, and Carl Lemonds

of Texas Instruments for arranging the fabrication of the three low-Vt chips described in

Ch. 6. I am also indebted to Michael Godfrey for allowing me the generous use of his

test equipment, James Pak for the high-magnification die microphotographs of Ch. 5, and

Sabina Chen and Karletta Chief for editing assistance.

On a personal level, my deepest thanks go to my parents for their unwavering love and

encouragement. Ahéhee’ shi yaa h�liniil’a dóó sh́ıka’ ayi’ no�lch́ı̧́ı̧’. Ntsaago nich’i̧’ baa ahééh

nisin dóó ayóó’ anóshńı. I also thank my sister Janet, brother-in-law Ivan, brother Vern,

and sister-in-law Karen for their prodding questions and encouragement that helped keep

me motivated through my many years of graduate school.

I’m thankful too for special people I’ve been blessed to have in my life; among them

are: Bonnie Arnwine, Jennifer Thenhaus, Laurie Wong, Kim Greenwaldt, John Chan, Jon

Stocker, Eddy Chee, Eugene Chi, Jason Swider, Crystie Prince, Debbie Tucker, Amy Dun-

can, and Anne Duncan.

Above all, I thank my God and Creator—who gave me the opportunity to undertake

this work, and who, long ago, designed an ordered universe in which FFTs could be studied.

vi

Contents

Abstract iv

Acknowledgments v

List of Tables xi

List of Figures xii

List of Symbols xv

1 Introduction 1

1.1 Research Goals . 1

1.2 Synopsis . 3

2 The Fourier Transform 4

2.1 The Continuous Fourier Transform . 4

2.2 The Discrete Fourier Transform (DFT) . 6

2.3 The Fast Fourier Transform (FFT) . 8

2.3.1 History . 8

2.3.2 Simple Derivation . 9

2.3.3 Relative Efficiencies . 14

2.3.4 Notation . 15

2.4 Common FFT Algorithms . 15

2.4.1 Common-Factor Algorithms . 19

2.4.2 Prime-Factor Algorithms . 25

2.4.3 Other FFT Algorithms . 29

vii

2.5 Summary . 30

3 Low-Power Processors 32

3.1 Introduction . 32

3.1.1 Power vs. Energy . 33

3.2 Power Consumption in CMOS . 33

3.2.1 Short-Circuit Power . 34

3.2.2 Leakage Power . 34

3.2.3 Switching Power . 35

3.2.4 Constant-Current Power . 36

3.3 Common Power Reduction Techniques . 37

3.3.1 Power Supply Reduction . 37

3.3.2 Algorithmic and Architectural Design 38

3.3.3 Circuit Design . 40

3.3.4 Fabrication Technology . 42

3.3.5 Reversible Circuits . 45

3.3.6 Asynchronous Systems . 47

3.3.7 Software Design . 48

3.4 Summary . 48

4 The Cached-FFT Algorithm 50

4.1 Overview of the Cached-FFT . 51

4.1.1 Basic Operation . 51

4.1.2 Key Features . 52

4.1.3 Relevant Cached-FFT Definitions . 52

4.2 FFT Algorithms Similar to the Cached-FFT 53

4.3 General FFT Terms . 56

4.4 The RRI-FFT Algorithm . 59

4.4.1 Existence of the RRI-FFT . 59

4.5 Existence of the Cached-FFT . 64

4.6 A General Description of the RRI-FFT . 66

4.7 A General Description of the Cached-FFT 69

4.7.1 Implementing the Cached-FFT . 76

4.7.2 Unbalanced Cached-FFTs . 78

viii

4.7.3 Reduction of Memory Traffic . 79

4.7.4 Calculating Multiple Transform Lengths 79

4.7.5 Variations of the Cached-FFT . 80

4.7.6 Comments on Cache Design . 80

4.8 Software Implementations . 80

4.9 Summary . 82

5 An Energy-Efficient, Single-Chip FFT Processor 83

5.1 Key Characteristics and Goals . 83

5.2 Algorithmic Design . 85

5.2.1 Radix Selection . 85

5.2.2 DIT vs. DIF . 85

5.2.3 FFT Algorithm . 85

5.2.4 Programmable vs. Dedicated Controller 86

5.3 Architectural Design . 87

5.3.1 Memory System Architecture . 87

5.3.2 Pipeline Design . 90

5.3.3 Datapath Design . 92

5.3.4 Required Functional Units . 93

5.3.5 Chip-Level Block Diagram . 93

5.3.6 Fixed-Point Data Word Format . 93

5.4 Physical Design . 95

5.4.1 Main Memory . 95

5.4.2 Caches . 103

5.4.3 Multipliers . 106

5.4.4 WN Coefficient Storage . 113

5.4.5 Adders/Subtracters . 115

5.4.6 Controllers . 119

5.4.7 Clocking Methodology, Generation and Distribution 120

5.4.8 Testing and Debugging . 123

5.5 Design Approach and Tools Used . 124

5.5.1 High-Level Design . 125

5.5.2 Layout . 125

ix

5.5.3 Verification . 125

5.6 Summary . 126

6 Measured and Projected Spiffee Performance 127

6.1 Spiffee1 . 127

6.1.1 Low-Power Operation . 128

6.1.2 High-Speed Operation . 130

6.1.3 General Performance Figures . 130

6.1.4 Analysis . 135

6.2 Low-Vt Processors . 141

6.2.1 Low-Vt 0.26 µm Spiffee . 141

6.2.2 ULP 0.5 µm Spiffee . 141

7 Conclusion 143

7.1 Contributions . 143

7.2 Future Work . 144

7.2.1 Higher-Precision Data Formats . 144

7.2.2 Multiple Datapath-Cache Processors 146

7.2.3 High-Throughput Systems . 147

7.2.4 Multi-Dimensional Transforms . 147

7.2.5 Other-Length Transforms . 148

A Spiffee1 Data Sheet 149

Glossary 151

Bibliography 157

Index 166

Revision History 169

x

List of Tables

2.1 Comparison of DFT and FFT efficiencies 14

2.2 Number of multiplications required for various radix algorithms 24

2.3 Arithmetic required for various radices and transform lengths 25

3.1 Power reduction through lower supply voltages 37

4.1 Strides of butterflies across logr N stages . 61

4.2 Butterfly counter and group counter information for an RRI-FFT 67

4.3 Addresses and WN exponents for an RRI-FFT 68

4.4 Addresses and WN coefficients for a 64-point, radix-2, DIT FFT 69

4.5 Memory addresses for a balanced, radix-r, DIT cached-FFT 71

4.6 A simplified view of the memory addresses shown in Table 4.5 72

4.7 Base WN coefficients for a balanced, radix-r, DIT cached-FFT 73

4.8 Addresses and WN coefficients for a 64-point, 2-epoch cached-FFT 74

4.9 Main memory and cache addresses for a 64-point, 2-epoch cached-FFT . . . 74

4.10 Cache addresses and WN coefficients for a 64-point, 2-epoch cached-FFT . . 76

5.1 Spiffee’s 20-bit, 2’s-complement, fixed-point, binary format 94

5.2 Truth table for a full adder . 117

6.1 Measured Vt values for Spiffee1 . 128

6.2 Comparison of processors calculating 1024-point complex FFTs 137

A.1 Key measures of the Spiffee1 FFT processor 150

xi

List of Figures

2.1 Example function with a finite discontinuity 5

2.2 Flow graph of an 8-point DFT calculated using two N/2-point DFTs 11

2.3 Flow graph of an 8-point DFT with merged WN coefficients 12

2.4 Flow graph of an 8-point radix-2 DIT FFT 13

2.5 Flow graph of an 8-point radix-2 DIT FFT using W8 coefficients 14

2.6 Radix-2 DIT FFT butterfly diagrams . 15

2.7 Flow graph of an 8-point radix-2 DIT FFT using simpler butterflies 16

2.8 x(n) input mappings for an 8-point DIT FFT 17

2.9 A radix-2 Decimation In Frequency (DIF) butterfly 22

2.10 A radix-4 DIT butterfly . 23

2.11 Input and output mappings for a 12-point prime-factor FFT 28

2.12 A split-radix butterfly . 30

3.1 Three primary CMOS power consumption mechanisms 34

3.2 A constant-current NOR gate . 36

3.3 Functional units using gated clocks . 39

3.4 Cross-section of ULP NMOS and PMOS transistors 44

3.5 A reversible logic gate . 46

4.1 Cached-FFT processor block diagram . 51

4.2 FFT dataflow diagram with labeled stages 57

4.3 Radix-2 butterfly with stride = 4 . 58

4.4 Radix-4 butterfly with stride = 1 . 58

4.5 Decimation of an N -point sequence into an (N/r) × r array 60

4.6 16×1 x(n) input sequence array . 61

4.7 8×2 x̂(n) intermediate data array . 61

xii

4.8 4×2 x̂(n) intermediate data array . 62

4.9 2×2 x̂(n) intermediate data array . 62

4.10 9×3 x̂(n) intermediate data array . 63

4.11 3×3 x̂(n) intermediate data array . 63

4.12 Stride and span of arbitrary-radix butterflies 64

4.13 Stride and span of radix-3 butterflies . 65

4.14 Extended diagram of the stride and span of arbitrary-radix butterflies . . . 66

4.15 Cached-FFT dataflow diagram . 75

5.1 Single-memory architecture block diagram 87

5.2 Dual-memory architecture block diagram 87

5.3 Pipeline architecture block diagram . 88

5.4 Array architecture block diagram . 88

5.5 Cached-FFT processor block diagram . 89

5.6 Block diagram of cached-memory architecture with two cache sets 89

5.7 Block diagram of cached-memory architecture with two sets and two banks 90

5.8 Spiffee’s nine-stage datapath pipeline diagram 90

5.9 Cache→memory pipeline diagram . 91

5.10 Memory→cache pipeline diagram . 92

5.11 Chip block diagram . 94

5.12 Circuit showing SRAM bitline fan-in leakage 97

5.13 Spice simulation of a read failure with a non-hierarchical-bitline SRAM . . 98

5.14 Schematic of a hierarchical-bitline SRAM 99

5.15 Spice simulation of a successful read with a hierarchical-bitline SRAM . . . 100

5.16 Microphotograph of a 128-word × 36-bit SRAM array 103

5.17 Microphotograph of an SRAM cell array . 104

5.18 Simplified schematic of a dual-ported cache memory array 105

5.19 Microphotograph of a 16-word × 40-bit cache array 106

5.20 Generic multiplier block diagram . 107

5.21 Microphotograph of a 20-bit multiplier . 111

5.22 Microphotograph of Booth decoders in the partial product generation array 112

5.23 Microphotograph of a (4,2) adder . 113

5.24 Schematic of a ROM with hierarchical bitlines 114

xiii

5.25 Microphotograph of a ROM array . 115

5.26 Full-adder block diagram . 116

5.27 24-bit adder block diagram . 118

5.28 Microphotograph of a 24-bit adder . 118

5.29 FFT processor controller . 120

5.30 Schematic of a flip-flop with a local clock buffer 121

5.31 Microphotograph of clocking circuitry . 122

5.32 Microphotograph of scannable latches . 123

5.33 Design flow and CAD tools used . 124

6.1 Microphotograph of the Spiffee1 processor 129

6.2 Change in performance and energy with an n-well bias applied 130

6.3 Maximum operating frequency vs. supply voltage 131

6.4 Energy consumption vs. supply voltage . 132

6.5 E × T per FFT vs. supply voltage . 133

6.6 Power dissipation vs. supply voltage . 135

6.7 Sample input sequence and FFTs calculated by Matlab and Spiffee1 136

6.8 CMOS technology vs. clock frequency for processors in Table 6.2 138

6.9 Adjusted energy-efficiency of various FFT processors 139

6.10 Silicon area vs. E × T for several FFT processors 140

6.11 Silicon area vs. FFT execution time for CMOS processors in Table 6.2 . . . 140

7.1 System with multiple processor-cache pairs 146

7.2 Multi-processor, high-throughput system block diagram 147

xiv

List of Symbols

A butterfly input, arbitrary integer.

a activity of a node.

B butterfly input, arbitrary integer.

bk kth bit within the butterfly counter.

C size of a cache memory (words), butterfly input, arbitrary integer, capacitance (F).

Cload load capacitance (F).

c stages in an RRI-FFT, logr C.

D butterfly input, arbitrary integer.

E number of epochs in a cached-FFT, energy (J).

F (·) the continuous Fourier transform of the function f(·), if it exists.

f clock frequency (Hz).

f(·) an arbitrary, complex function.

Gnd ground reference potential of a circuit.

gk kth bit within the group counter.

H(·) Heaviside step function.

I current (A).

Ids current flowing from the drain to the source of a MOS transistor (A).

Ileakage Ids for a MOSFET with Vgs = 0 (A).

Ioff Ids for a MOSFET with Vgs = 0 (A).

Ion Ids for an NMOS device with Vgs = Vdd or a PMOS device with Vgs = −Vdd (A).

i
√−1.

�{·} imaginary component of its argument.

k integer index, arbitrary integer.

k1, k2 integer indexes.

ke processor energy coefficient (µJ/V2).

xv

kf processor clock frequency coefficient (MHz/V).

L inductance (H), words in a memory.

Lpoly minimum gate length or polysilicon width (µm).

l arbitrary integer.

M logr N , data sequence length.

m arbitrary integer.

N length of the input and output sequences of a DFT or FFT.

N ′ a particular value of N .

N1, N2 factors of N .

n integer index.

n1, n2 factors of N , integer indexes.

neven even-valued index.

nodd odd-valued index.

O(·) “on the order of.”

P power (W), number of passes in a cached-FFT.

p small prime number, arbitrary real number.

Q electrical charge (coulombs).

R resistance (ohms).

r radix of an FFT decomposition, arbitrary real number.

�{·} real component of its argument.

S segments in a hierarchical-bitline memory.

s continuous, real, independent variable of F (·); stage of an FFT.

T time (sec).

t time (sec), thickness of a material (m).

V voltage (V), butterfly output.

Vbs body voltage of a MOS transistor with respect to its source (V).

Vdd supply voltage of a circuit (V).

Vds drain voltage of a MOS transistor with respect to its source (V).

Vgs gate voltage of a MOS transistor with respect to its source (V).

Vin input voltage of a circuit (V).

Vn-well n-well voltage (V).

Vout output voltage of a circuit (V).

Vp-substrate p-substrate voltage (V).

xvi

Vpulse pulsed voltage source voltage (V).

Vp-well p-well voltage (V).

Vsb source voltage of a MOS transistor with respect to its body (V).

Vswing voltage difference between logic “0” and logic “1” values (V).

Vt threshold-voltage of a MOS transistor (V).

Vt-nmos Vt of an NMOS transistor (V).

Vt-pmos Vt of a PMOS transistor (V).

W butterfly output.

WN DFT kernel, e−i2π/N ; also called the “N th root of unity.”

X butterfly output.

X(k) output sequence of a forward DFT, defined for k = 0, 1, . . . , N − 1.

x continuous, real, independent variable of f(·); arbitrary real number.

x(n) input sequence of a forward DFT, defined for n = 0, 1, . . . , N − 1.

xeven(·) sequence consisting of the even members of x(·).
xodd(·) sequence consisting of the odd members of x(·).
x∗ complex conjugate of x.

X̂, x̂ intermediate values in the calculation of an FFT or IFFT.

Y butterfly output.

y arbitrary real number.

Z intermediate butterfly value.

z arbitrary real number.

α fabrication technology scaling factor, arbitrary integer.

β arbitrary integer.

γ arbitrary integer.

δ arbitrary integer.

δ(·) Dirac delta “function.”

ε permittivity (F/cm).

ε0 permittivity of vacuum, 8.854 × 10−14 F/cm.

εr relative permittivity.

θ arbitrary angle.

λ scalable unit of measure commonly used in chip designs (µm).

φ, φ clock signals.

xvii

Chapter 1

Introduction

The Discrete Fourier Transform (DFT) is one of the most widely used digital signal process-

ing (DSP) algorithms. DFTs are almost never computed directly, but instead are calculated

using the Fast Fourier Transform (FFT), which comprises a collection of algorithms that

efficiently calculate the DFT of a sequence. The number of applications for FFTs continues

to grow and includes such diverse areas as: communications, signal processing, instru-

mentation, biomedical engineering, sonics and acoustics, numerical methods, and applied

mechanics.

As semiconductor technologies move toward finer geometries, both the available per-

formance and the functionality per die increase. Unfortunately, the power consumption of

processors fabricated in advancing technologies also continues to grow. This power increase

has resulted in the current situation, in which potential FFT applications, formerly limited

by available performance, are now frequently limited by available power budgets. The recent

dramatic increase in the number of portable and embedded applications has contributed

significantly to this growing number of power-limited opportunities.

1.1 Research Goals

The goal of this research is to develop the algorithm, architectures, and circuits necessary

for high-performance and energy-efficient FFT processors—with an emphasis on a VLSI

implementation. A suitable solution achieves the following sub-goals:

1

CHAPTER 1. INTRODUCTION 2

High Energy-Efficiency

Power by itself is an inadequate design goal since the power of a processor can easily

be decreased by reducing its workload. Energy consumption is a measure of the cost

per work performed, and therefore provides a more useful “low-power” design goal.

High Throughput

While the calculation of results with low latency is desirable for both general-purpose

and DSP processors, processing data with high throughput is much more important

for nearly all DSP processor applications. Therefore, this research will emphasize high

data throughput at the expense of latency, when necessary.

VLSI Suitability

The signal processing literature contains a large number of FFT algorithms. Nearly

all authors evaluate algorithms based on simple measures, such as the number of

multiplications, or the number of multiplications plus additions. This dissertation

argues that for the VLSI implementation of an FFT processor, other measures, such

as complexity and regularity, are at least as important as the number of arithmetic

operations.

Simple designs permit straightforward implementations, require less design effort, and

typically contain fewer errors, compared to complex designs. In a commercial setting,

simple designs reduce time-to-market. Design time no longer required to manage

complexity can be used to further optimize other measures such as performance,

power, and area.

Regular designs have few constituent components and are largely built-up by repli-

cating several basic building blocks. Regular implementations gain many of the same

benefits enjoyed by simple designs.

CHAPTER 1. INTRODUCTION 3

1.2 Synopsis

Contributions

The principal contributions of this research are:

1. Development of a new FFT algorithm, called the cached-FFT algorithm. This al-

gorithm makes use of a cache memory and enables a processor to operate with high

energy-efficiency and high speed.

2. Design of a wide variety of circuits which operate robustly in a low supply-voltage

environment. The circuits were developed to function using transistors with either

standard or low thresholds.

3. Design, fabrication, and characterization of a single-chip, cached-FFT processor. The

processor has high energy-efficiency with good performance at low supply voltages,

and high performance with good energy-efficiency at typical supply voltages.

These contributions are reviewed in the final chapter of this work.

Overview

Chapter 2 begins with an introduction of the continuous Fourier transform and the dis-

crete Fourier transform. A derivation of the FFT is given; the remainder of the chapter

presents an overview of the major FFT algorithms. Chapter 3 introduces the four primary

power consumption mechanisms of CMOS circuits and reviews a number of popular power

reduction techniques. Chapter 4 presents the cached-FFT algorithm. This algorithm is

well-suited to high-performance, energy-efficient, hardware applications, as well as exhibit-

ing potential on programmable processors. Chapter 5 describes Spiffee, a single-chip FFT

processor design which uses the cached-FFT algorithm. Details of the design are given at

the algorithmic, architectural, and physical levels, including circuits and layout. Chapter 6

presents performance data from Spiffee1, the first Spiffee processor. Spiffee1 was fabricated

in a 0.7µm CMOS process, and is fully functional. Finally, Chapter 7 summarizes the work

presented and suggests areas for future work.

Chapter 2

The Fourier Transform

This chapter begins with an overview of the Fourier transform in its two most common

forms: the continuous Fourier transform and the Discrete Fourier Transform (DFT). Many

excellent texts (Bracewell, 1986; Oppenheim and Schafer, 1989; Roberts and Mullis, 1987;

Strum and Kirk, 1989; DeFatta et al., 1988; Jackson, 1986) exist on the topic of the Fourier

transform and its properties, and may be consulted for additional details. The remainder

of the chapter focuses on the introduction of a collection of algorithms used to efficiently

compute the DFT; these algorithms are known as Fast Fourier Transform (FFT) algorithms.

2.1 The Continuous Fourier Transform

The continuous Fourier transform is defined in Eq. 2.11. It operates on the function f(x)

and produces F (s), which is referred to as the Fourier transform of f(x).

F (s) =

∫ ∞

−∞
f(x)e−i2πxsdx (2.1)

The constant i represents the imaginary quantity
√−1. The independent variables x and

s are real-valued and are defined from −∞ to ∞. Since the independent variable of f is

often used to represent time, it is frequently called the “time” variable and denoted t. This

title can be a misnomer since f can be a function of a variable with arbitrary units and is,

in fact, commonly used with units of distance. Analogously, the independent variable of F

1Alternate, but functionally equivalent forms can be found in Bracewell (1986).

4

CHAPTER 2. THE FOURIER TRANSFORM 5

f(x)

xx0

finite

Figure 2.1: Example function with a finite discontinuity

is often denoted f and called the “frequency” variable; its units are the inverse of x’s units.

In general, the functions f(x) and F (s) are complex-valued.

Because of the way the Fourier integral is defined, not every function f(x) has a trans-

form F (s). While necessary and sufficient conditions for convergence are not known, two

conditions which are sufficient for convergence (Bracewell, 1986) are:

Condition 1

The integral of |f(x)| from −∞ to ∞ exists. That is,

∫ ∞

−∞
|f(x)|dx < ∞. (2.2)

Condition 2

Any discontinuities in f(x) are bounded. For example, the function shown in Fig. 2.1

is discontinuous at x = x0, but only over a finite distance, so this function meets the

second condition.

Because these conditions are only sufficient, many functions which do not meet these con-

ditions nevertheless have Fourier transforms. In fact, such useful functions as sin(x), the

Heaviside step function H(x), sinc(x), and the “generalized” Dirac delta “function” δ(x),

fall into this category.

The counterpart to Eq. 2.1 is the inverse Fourier transform, which transforms F (s) back

into f(x) and is defined as,

f(x) =

∫ ∞

−∞
F (s)ei2πxsds. (2.3)

CHAPTER 2. THE FOURIER TRANSFORM 6

While the generality of the continuous Fourier transform is elegant and works well for

the study of Fourier transform theory, it has limited direct practical use. One reason for

the limited practical use stems from the fact that any signal f(x) that exists over a finite

interval has a spectrum F (s) which extends to infinity, and any spectrum that has finite

bandwidth has a corresponding infinite-duration f(x). Also, the functions f(x) and F (s)

are continuous (at least stepwise) or analog functions, meaning that they are, in general,

defined over all values of their independent variables (except at bounded discontinuities as

described in Condition 2). Since digital computers have finite memory, they can neither

store nor process the infinite number of data points that would be needed to describe an

arbitrary, infinite function. For practical applications, a special case of the Fourier transform

known as the discrete Fourier transform is used. This transform is defined for finite-length

f(x) and F (s) described by a finite number of samples, and is discussed in the next section.

2.2 The Discrete Fourier Transform (DFT)

The discrete Fourier transform operates on an N -point sequence of numbers, referred to as

x(n). This sequence can (usually) be thought of as a uniformly sampled version of a finite

period of the continuous function f(x). The DFT of x(n) is also an N -point sequence,

written as X(k), and is defined in Eq. 2.4. The functions x(n) and X(k) are, in general,

complex. The indices n and k are real integers.

X(k) =
N−1∑
n=0

x(n)e−i2πnk/N , k = 0, 1, . . . , N − 1 (2.4)

Using a more compact notation, we can also write,

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (2.5)

where we have introduced the term WN ,

WN = e−i2π/N (2.6)

= cos

(
2π

N

)
− i sin

(
2π

N

)
. (2.7)

CHAPTER 2. THE FOURIER TRANSFORM 7

The variable WN is often called an “N th root of unity” since (WN)N = e−i2π = 1.

Another very special quality of WN is that it is periodic; that is, Wn
N = Wn+mN

N for any

integer m. The periodicity can be expressed through the relationship Wn+mN
N = Wn

NWmN
N

because,

WmN
N =

(
e−i2π/N

)mN
, m = −∞, . . . ,−1, 0, 1, . . . ,∞ (2.8)

= e−i2πm (2.9)

= 1. (2.10)

In a manner similar to the inverse continuous Fourier transform, the Inverse DFT

(IDFT), which transforms the sequence X(k) back into x(n), is,

x(n) =
1

N

N−1∑
k=0

X(k)ei2πnk/N , n = 0, 1, . . . , N − 1 (2.11)

=
1

N

N−1∑
k=0

X(k)W−nk
N , n = 0, 1, . . . , N − 1. (2.12)

From Eqs. 2.4 and 2.11, x(n) and X(k) are explicitly defined over only the finite interval

from 0 to N − 1. However, since x(n) and X(k) are periodic in N , (viz., x(n) = x(n+mN)

and X(k) = X(k + mN) for any integer m), they also exist for all n and k respectively.

An important characteristic of the DFT is the number of operations required to compute

the DFT of a sequence. Equation 2.5 shows that each of the N outputs of the DFT is the

sum of N terms consisting of x(n)Wnk
N products. When the term Wnk

N is considered a

pre-computed constant, calculation of the DFT requires N(N − 1) complex additions and

N2 complex multiplications. Therefore, roughly 2N2 or O(N2) operations2 are required to

calculate the DFT of a length-N sequence.

For this analysis, the IDFT is considered to require the same amount of computation

as its forward counterpart, since it differs only by a multiplication of the constant 1/N and

by a minus sign in the exponent of e. The negative exponent can be handled without any

additional computation by modifying the pre-computed WN term.

Another important characteristic of DFT algorithms is the size of the memory required

for their computation. Using Eq. 2.5, each term of the input sequence must be preserved

2The symbol O means “on the order of”; therefore, O(P) means on the order of P .

CHAPTER 2. THE FOURIER TRANSFORM 8

until the last output term has been computed. Therefore, at a minimum, 2N memory

locations are necessary for the direct calculation of the DFT.

2.3 The Fast Fourier Transform (FFT)

The fast Fourier transform is a class of efficient algorithms for computing the DFT. It

always gives the same results (with the possible exception of a different round-off error) as

the calculation of the direct form of the DFT using Eq. 2.4.

The term “fast Fourier transform” was originally used to describe the fast DFT algo-

rithm popularized by Cooley and Tukey’s landmark paper (1965). Immediately prior to

the publication of that paper, nearly every DFT was calculated using an O(N2) algorithm.

After the paper’s publication, the popularity of the DFT grew dramatically because of this

new efficient class of algorithms.

2.3.1 History

Despite the fact Cooley and Tukey are widely credited with the discovery of the FFT, in

reality, they only “re-discovered” it. Cooley, Lewis, and Welch (1967) report some of the

earlier known discoverers. They cite a paper by Danielson and Lanczos (1942) describing

a type of FFT algorithm and its application to X-ray scattering experiments. In their

paper, Danielson and Lanczos refer to two papers written by Runge (1903; 1905). Those

papers and lecture notes by Runge and König (1924), describe two methods to reduce

the number of operations required to calculate a DFT: one exploits the symmetry and a

second exploits the periodicity of the DFT kernel eiθ. In this context, symmetry refers to

the property �{eiθ} = �{e−iθ} and �{eiθ} = −�{e−iθ}; or simply eiθ = (e−iθ)∗, where

x∗ is the complex conjugate of x. Exploiting symmetry allows the DFT to be computed

more efficiently than a direct process, but only by a constant factor; the algorithm is still

O(N2). Runge and König briefly discuss a method to reduce computational requirements

still further by exploiting the periodicity of eiθ. The periodicity of eiθ is seen by noting

that eiθ = eiθ+2πm where m is any integer. By taking advantage of the periodicity of the

DFT kernel, much greater gains in efficiency are possible, such that the complexity can

be brought below O(N2), as will be shown in Sec. 2.3.2. The length of transforms Runge

and König worked with were relatively short (since all computation was done by hand);

consequently, both methods brought comparable reductions in computational complexity

CHAPTER 2. THE FOURIER TRANSFORM 9

and Runge and König actually emphasized the method exploiting symmetry.

Fifteen years after Cooley and Tukey’s paper, Heideman et al. (1984), published a paper

providing even more insight into the history of the FFT including work going back to Gauss

(1866). Gauss’ work is believed to date from October or November of 1805 and, amazingly,

predates Fourier’s seminal work by two years.

2.3.2 Simple Derivation

This section introduces the FFT by deriving one of its simplest forms. First, the DFT,

Eq. 2.5, and the definition of WN , Eq. 2.7, are repeated below for convenience.

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (2.13)

WN = e−i2π/N (2.14)

For this illustration, N is chosen to be a power of 2, that is, N = 2m, where m is a positive

integer. The length N is therefore an even number, and x(n) can be separated into two

sequences of length N/2, where one consists of the even members of x and a second consists

of the odd members. Splitting Eq. 2.13 into even-indexed and odd-indexed summations

gives,

X(k) =
N−2∑

neven=0

x(n)Wnk
N +

N−1∑
nodd=1

x(n)Wnk
N . (2.15)

If 2m is substituted for n in the even-indexed summation and 2m + 1 is substituted for n

in the odd-indexed summation (with m = 0, 1, . . . , N/2 − 1), the result is,

X(k) =

N/2−1∑
m=0

x(2m)W 2mk
N +

N/2−1∑
m=0

x(2m + 1)W
(2m+1)k
N (2.16)

=

N/2−1∑
m=0

x(2m)
(
W 2

N

)mk
+

N/2−1∑
m=0

x(2m + 1)
(
W 2

N

)mk
W k

N . (2.17)

CHAPTER 2. THE FOURIER TRANSFORM 10

But W 2
N can be simplified. Beginning with Eq. 2.14:

W 2
N =

(
e−i2π/N

)2
(2.18)

= e−i2π2/N

= e−i2π/(N/2)

= WN/2. (2.19)

Then, Eq. 2.17 can be written,

X(k) =

N/2−1∑
m=0

x(2m)Wmk
N/2 + W k

N

N/2−1∑
m=0

x(2m + 1)Wmk
N/2 (2.20)

=

N/2−1∑
m=0

xeven(m)Wmk
N/2 + W k

N

N/2−1∑
m=0

xodd(m)Wmk
N/2, (2.21)

k = 0, 1, . . . , N − 1

where xeven(m) is a sequence consisting of the even-indexed members of x(n), and xodd(m)

is a sequence consisting of the odd-indexed members of x(n). The terms on the right are

now recognized as the (N/2)-point DFTs of xeven(m) and xodd(m).

X(k) = DFTN/2 {xeven(m), k} + W k
N · DFTN/2 {xodd(m), k} (2.22)

At this point, using only Eqs. 2.22 and 2.13, no real savings in computation have been

realized. The calculation of each X(k) term still requires 2 · O(N/2) = O(N) operations;

which means all N terms still require O (
N2

)
operations. As noted in Sec. 2.2, however,

the DFT of a sequence is periodic in its length (N/2 in this case), which means that

the (N/2)-point DFTs of xeven(m) and xodd(m) need to be calculated for only N/2 of

the N values of k. To re-state this key point in another way, the (N/2)-point DFTs are

calculated for k = 0, 1, . . . , N/2 − 1 and then “re-used” for k = N/2, N/2 + 1, . . . , N − 1.

The N terms of X(k) can then be calculated with O
(
(N/2)2

)
+O

(
(N/2)2

)
= O(N2/2

)
operations plus O(N) operations for the multiplication by the W k

N terms, called “twiddle

factors.” The mathematical origin of twiddle factors is presented in Sec. 2.4.1. For large N ,

this O(N2/2 + N
)

algorithm represents a nearly 50% savings in the number of operations

required, compared to the direct evaluation of the DFT using Eq. 2.13. Figure 2.2 shows

CHAPTER 2. THE FOURIER TRANSFORM 11

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

0

1

2

3

4

5

6

7

N/2-point

N/2-point

DFT

DFT

Figure 2.2: Flow graph of an 8-point DFT calculated using two N/2-point DFTs. Integers
adjacent to large arrow heads signify a multiplication of the corresponding signal by W k

8 ,
where k is the given integer. Signals following arrows leading into a dot are summed into
that node.

the dataflow of this algorithm for N = 8 in a graphical format. The vertical axis represents

memory locations. There are N memory locations for the N -element sequences x(n) and

X(k). The horizontal axis represents stages of computation. Processing begins with the

input sequence x(n) on the left side and progresses from left to right until the output X(k)

is realized on the right.

It is possible to reduce the N multiplications by W k
N , k = 0, 1, . . . , N − 1 by exploiting

the following relationship:

W
x+N/2
N = W x

NW
N/2
N (2.23)

= W x
N

(
e−i2π/N

)N/2
(2.24)

= W x
Ne−i2πN/2N (2.25)

= W x
Ne−iπ (2.26)

= −W x
N . (2.27)

In the context of the example shown in Fig. 2.2 where N = 8, Eq. 2.27 reduces to W x+4
8 =

−W x
8 and allows the transformation of the dataflow diagram of Fig. 2.2 into the one shown

in Fig. 2.3. Note that the calculations after the WN multiplications are now 2-point DFTs.

CHAPTER 2. THE FOURIER TRANSFORM 12

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

N/2-point

N/2-point

DFT

DFT

W 0
8

W 1
8

W 2
8

W 3
8

Figure 2.3: Flow graph of an 8-point DFT calculated using two N/2-point DFTs, with
merged WN coefficients. A minus sign (−) adjacent to an arrow signifies that the signal is
subtracted from, rather than added into, the node.

Since N was chosen to be a power of 2, if N > 2, both xeven(m) and xodd(m) also

have even numbers of members. Therefore, they too can be separated into sequences made

up of their even and odd members, and computed from N/2/2 = N/4-point DFTs. This

procedure can be applied recursively until an even and odd separation results in sequences

that have two members. No further separation is then necessary since the DFT of a 2-point

sequence is trivial to compute, as will be shown shortly. Figure 2.4 shows the dataflow

diagram for the example with N = 8. Note that the recursive interleaving of the even and

odd inputs to each DFT has scrambled the order of the inputs.

This separation procedure can be applied log2(N) − 1 times, producing log2 N stages.

The resulting mth stage (for m = 0, 1, . . . , log2(N)− 1) has N/
(
2m+1

) · 2m = N/2 complex

multiplications by some power of W . The final stage is reduced to 2-point DFTs. These

are very easy to calculate because, from Eq. 2.13, the DFT of the 2-point sequence x (n) =

{x (0) , x (1)} requires no multiplications and is calculated by,

X(0) = x(0) + x(1) (2.28)

X(1) = x(0) − x(1). (2.29)

Each stage is calculated with roughly 2.5N or O(N) complex operations since each

CHAPTER 2. THE FOURIER TRANSFORM 13

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

W 0
8

W 1
8

W 2
8

W 3
8

W 0
4

W 0
4

W 1
4

W 1
4

W 0
2

W 0
2

W 0
2

W 0
2

Figure 2.4: Flow graph of an 8-point radix-2 DIT FFT

of the N/2 2-point DFTs requires one addition and one subtraction, and there are N/2

WN multiplications per stage. Summing things up, the calculation of this N -point FFT

requires O(N) operations for each of its log2 N stages, so the total computation required is

O (N log2 N) operations.

To reduce the total number of W coefficients needed, all W coefficients are normally

converted into equivalent WN values. For the diagram of Fig. 2.4, W 0
4 = W 0

2 = W 0
8 and

W 1
4 = W 2

8 ; resulting in the common dataflow diagram shown in Fig. 2.5.

A few new terms

Before moving on to other types of FFTs, it is worthwhile to look back at the assumptions

used in this example and introduce some terms which describe this particular formulation

of the FFT.

Since each stage broke the DFT into two smaller DFTs, this FFT belongs to a class of

FFTs called radix-2 FFTs. Because the input (or time) samples were recursively decimated

into even and odd sequences, this FFT is also called a decimation in time (DIT) FFT.

It is also a power-of-2 FFT for obvious reasons and a constant-radix FFT because the

decimation performed at each stage was of the same radix.

CHAPTER 2. THE FOURIER TRANSFORM 14

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

W 0
8

W 1
8

W 2
8

W 3
8

W 0
8

W 0
8

W 2
8

W 2
8

W 0
8

W 0
8

W 0
8

W 0
8

Figure 2.5: Flow graph of an 8-point radix-2 DIT FFT using only W8 coefficients

Transform DFT FFT DFT ops

length (N) operations operations ÷ FFT ops

16 256 64 4

128 16,400 896 18

1024 1.05 × 106 10,240 102

32,768 1.07 × 109 4.92 × 105 2185

1,048,576 1.10 × 1012 2.10 × 107 52,429

Table 2.1: Comparison of DFT and FFT efficiencies

2.3.3 Relative Efficiencies

As was mentioned in Sec. 2.2, the calculation of the direct form of the DFT requires

O (
N2

)
operations. From the previous section, however, the FFT was shown to require

only O(N log N) operations. For small values of N , this difference is not very significant.

But as Table 2.1 shows, for large N , the FFT is orders of magnitude more efficient than

the direct calculation of the DFT. Though the table shows the number of operations for a

radix-2 FFT, the gains in efficiency are similar for all FFT algorithms, and are O(N/ log N).

CHAPTER 2. THE FOURIER TRANSFORM 15

B

A X=A+BW

Y=A-BW
W

(a) Signal flow representation

W

B

A X=A+BW

Y=A-BW

(b) Simplified representation

Figure 2.6: Radix-2 DIT FFT butterfly diagrams

2.3.4 Notation

A butterfly is a convenient computational building block with which FFTs are calculated.

Using butterflies to draw flow graphs simplifies the diagrams and makes them much easier to

read. Figure 2.6(a) shows a standard signal flow representation of a radix-2 DIT butterfly.

Large arrows signify multiplication of signals and smaller arrows show the direction of

signal flow. Figure 2.6(b) shows an alternate butterfly representation that normally is used

throughout this dissertation because of its simplicity.

Figure 2.7 shows the same FFT as Fig. 2.5 except that it uses the simplified butterfly.

For larger FFTs or when only the dataflow is of importance, the W twiddle factors will be

omitted.

The butterflies shown in Fig. 2.6 are radix-2 DIT butterflies. Section 2.4 presents other

butterfly types with varying structures and different numbers of inputs and outputs.

2.4 Common FFT Algorithms

This section reviews a few of the more common FFT algorithms. All approaches begin

by choosing a value for N that is highly composite, meaning a value with many factors.

If a certain N ′ is chosen which has l factors, then the N ′-element input sequence can be

represented as an l-dimensional array. Under certain circumstances, the N ′-point FFT

can be calculated by performing DFTs in each of the l dimensions with the (possible)

CHAPTER 2. THE FOURIER TRANSFORM 16

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

W

W

W

W

W

W

W

W
W

W

W

W

Figure 2.7: Flow graph of an 8-point radix-2 DIT FFT using simpler butterflies

multiplication of intermediate terms by appropriate twiddle factors in between sets of DFTs.

Because l-dimensional arrays are difficult to visualize for l > 3, this procedure is normally

illustrated by reordering the 1-dimensional input sequence into a 2-dimensional array, and

then recursively dividing the sub-sequences until the original sequence has been divided by

all l factors of N ′. The sample derivation of Sec. 2.3.2 used this recursive division approach.

There, N ′ = 8 = 2 × 2 × 2, hence l = 3. Figure 2.8(a) shows how the separation of the

eight members of x(n) into even and odd sequences placed the members of x(n) into a

2-dimensional array. For clarity, twiddle factors are not shown. The next step was the

reordering of the rows of Fig. 2.8(a). The reordered rows can be shown by drawing a new

2×2 table for each of the two rows; or, the rows can be shown in a single diagram by adding

a third dimension.

Figure 2.8(b) shows the elements of x(n) placed into a 3-dimensional cube. It is now pos-

sible to see how the successive even/odd decimations scrambled the inputs of the flow graph

of Fig. 2.5, since butterfly input pairs in a particular stage of computation occupy adjacent

corners on the cube in a particular dimension. The four butterflies in the leftmost column

of Fig. 2.5 have the following pairs of inputs: {x (0) , x (4)} , {x(2), x(6)}, {x(1), x(5)}, and

{x(3), x(7)}. These input pairs are recognized as being adjacent on the cube of Fig. 2.8(b)

in the “front-left” to “back-right” direction. In the second column of butterflies, without

special notation, the terms of x(n) can no longer be referred to directly, since the inputs

CHAPTER 2. THE FOURIER TRANSFORM 17

x(7)

x(6)x(4)x(2)x(0)

x(1) x(3) x(5)

(a) 2-dimensional organization

x(3)

x(1)
x(6)

x(2)

x(0)

x(4)

x(5)

x(7)

(b) 3-dimensional organization

Figure 2.8: x(n) input mappings for an 8-point DIT FFT

and outputs of the butterflies are now values computed from various x(n) inputs. However,

the butterfly inputs can be referenced by the x(n) values which occupy the same rows.

Pairs of inputs to butterflies in the second column share rows with the following x(n) pairs:

{x(0), x(2)}, {x(4), x(6)}, {x(1), x(3)}, and {x(5), x(7)}, which are adjacent on the cube of

Fig. 2.8(b), in the vertical direction. Thirdly, the x(n) members corresponding to the inputs

to the butterflies in the third column of Fig. 2.5, are: {x(0), x(1)}, {x(4), x(5)}, {x(2), x(3)},
and {x(6), x(7)}, which are adjacent on the cube of Fig. 2.8(b) in the “back-left” to “front-

right” direction.

There are many possible ways to map the 1-dimensional input sequence x into a 2-

dimensional array (Burrus, 1977; Van Loan, 1992). The sequence x has N elements and is

written,

x(n) = [x(0), x(1), . . . , x(N − 1)] . (2.30)

With N being composite, N can be factored into two factors N1 and N2,

N = N1N2. (2.31)

CHAPTER 2. THE FOURIER TRANSFORM 18

The inputs can be reorganized, using a one-to-one mapping, into an N1 × N2 array which

we call x̂. Letting n1 be the index in the dimension of length N1 and n2 the index in the

dimension of length N2, x̂ can be written,

x̂(n1, n2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂(0, 0) x̂(0, 1) . . . x̂(0, N2 − 1)

x̂(1, 0) x̂(1, 1)
...

. . .

x̂(N1 − 1, 0) x̂(N1 − 1, N2 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.32)

with n1 = 0, 1, . . . , N1 − 1, n2 = 0, 1, . . . , N2 − 1, and

x(n) = x̂(n1, n2). (2.33)

One of the more common systems of mapping between the 1-dimensional x and the

2-dimensional x̂ is (Burrus, 1977),

n = An1 + Bn2 mod N (2.34)

for the mapping of the inputs x(n) into the array x̂(n1, n2), and

k = Ck1 + Dk2 mod N (2.35)

for the mapping of the DFT outputs X(k) into the array X̂(k1, k2), where X̂ is the 2-

dimensional map of X(k). Substituting Eqs. 2.33–2.35 into Eq. 2.13 yields,

X̂(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
(An1+Bn2)(Ck1+Dk2)
N (2.36)

=

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
An1Ck1

N WAn1Dk2

N WBn2Ck1

N WBn2Dk2

N . (2.37)

The modulo terms of Eqs. 2.34 and 2.35 are dropped in Eqs. 2.36 and 2.37 since, from

Eq. 2.10, the exponent of WN is periodic in N.

Different choices for the X̂ and x̂ mappings and N produce different FFT algorithms.

The remainder of this chapter introduces the most common types of FFTs and examines

two of their most important features: their flow graphs and their butterfly structures.

CHAPTER 2. THE FOURIER TRANSFORM 19

2.4.1 Common-Factor Algorithms

The arguably most popular class of FFT algorithms are the so-called common-factor FFTs.

They are also called Cooley-Tukey FFTs because they use mappings first popularized by

Cooley and Tukey’s 1965 paper. Their name comes from the fact that N1 and N2 of Eq. 2.31

have a common factor, meaning there exists an integer other than unity that evenly divides

N1 and N2. By contrast, this does not hold true for prime-factor FFTs, which are discussed

in Sec. 2.4.2.

For common-factor FFTs, A, B, C, and D of Eqs. 2.34 and 2.35 are set to A = N2, B =

1, C = 1, and D = N1. The equations can then be written as,

n = N2n1 + n2 (2.38)

k = k1 + N1k2. (2.39)

Eq. 2.37 then becomes,

X̂(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
N2n1k1

N WN2n1N1k2

N Wn2k1

N Wn2N1k2

N . (2.40)

The term WN2n1N1k2

N = WNn1k2

N = 1 for any values of n1 and k2. From reasoning similar to

that used in Eq. 2.19, WN2n1k1

N = Wn1k1

N1
and Wn2N1k2

N = Wn2k2

N2
. With these simplifications,

Eq. 2.40 becomes,

X̂(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
n1k1

N1
Wn2k1

N Wn2k2

N2
(2.41)

=

N1−1∑
n1=0

([
N2−1∑
n2=0

x̂(n1, n2)W
n2k2

N2

]
Wn2k1

N

)
Wn1k1

N1
. (2.42)

Reformulation of the input sequence into a 2-dimensional array allows the DFT to be

computed in a new way:

1. Calculate N1 N2-point DFTs of the terms in the rows of Eq. 2.32

2. Multiply the N1 ×N2 = N intermediate values by appropriate Wn2k1

N twiddle factors

3. Calculate the N2 N1-point DFTs of the intermediate terms in the columns of Eq. 2.32.

CHAPTER 2. THE FOURIER TRANSFORM 20

The three components of this decomposition are indicated in Eq. 2.43.

X̂(k1, k2) =

N1−1∑
n1=0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

N2−1∑
n2=0

x̂(n1, n2)W
n2k2

N2

︸ ︷︷ ︸
N2−pointDFT

⎤
⎥⎥⎥⎥⎥⎥⎦ Wn2k1

N

︸ ︷︷ ︸
TwiddleFactor

⎞
⎟⎟⎟⎟⎟⎟⎠Wn1k1

N1

︸ ︷︷ ︸
N1−pointDFT

(2.43)

Radix-r vs. Mixed-radix

Common-factor FFTs in which N = rk, where k is a positive integer, and where the

butterflies used in each stage are the same, are called radix-r algorithms. A radix-r FFT

uses radix-r butterflies and has logr N stages. Thinking in terms of re-mapping the sequence

into 2-dimensional arrays, the N -point sequence is first mapped into a r× (N/r) array, and

then followed by k−2 subsequent decimations. Alternatively, a multi-dimensional mapping

places the N input terms into a logr N -dimensional (r × r × · · · × r) array.

On the other hand, FFTs in which the radices of component butterflies are not all equal,

are called mixed-radix FFTs. Generally, radix-r algorithms are favored over mixed-radix

algorithms since the structure of butterflies in radix-r designs is identical over all stages,

therefore simplifying the design. However, in some cases, such as when N �= rk, the choice

of N determines that the FFT must be mixed-radix.

The next three subsections examine three types of common-factor FFTs which are likely

the most widely used FFT algorithms. They are the: radix-2 decimation in time, radix-2

decimation in frequency, and radix-4 algorithms.

Radix-2 Decimation In Time (DIT)

If N = 2k, N1 = N/2, and N2 = 2; Eqs. 2.38 and 2.39 then become,

n = 2n1 + n2 (2.44)

k = k1 +
N

2
k2. (2.45)

When applied to each of the log2 N stages, the resulting algorithm is known as a radix-2

decimation in time FFT. A radix-2 DIT FFT was derived in Sec. 2.3.2, so Figs. 2.6 and 2.7

CHAPTER 2. THE FOURIER TRANSFORM 21

show the radix-2 DIT butterfly and a sample flow graph respectively.

Because the exact computation required for the butterfly is especially important for

hardware implementations, we review it here in detail. As shown in Fig. 2.6, the inputs to

the radix-2 DIT butterfly are A and B, and the outputs are X and Y . W is a complex

constant that can be considered to be pre-computed. We have,

X = A + BW (2.46)

Y = A − BW. (2.47)

Because it would almost certainly never make sense to compute the B ×W term twice, we

introduce the variable Z = BW and re-write the equations,

Z = BW (2.48)

X = A + Z (2.49)

Y = A − Z. (2.50)

Thus, the radix-2 DIT butterfly requires one complex multiplication and two complex ad-

ditions 3.

Radix-2 Decimation In Frequency (DIF)

The second popular radix-2 FFT algorithm is known as the Decimation In Frequency (DIF)

FFT. This name comes from the fact that in one common derivation, the “frequency” values,

X(k), are decimated during each stage. The derivation by the decimation of X(k) is the

dual of the method used in Sec. 2.3.2. Another way to establish its form is to set N1 = 2

and N2 = N/2 in Eqs. 2.38 and 2.39.

n = N/2n1 + n2 (2.51)

k = k1 + 2k2 (2.52)

We will not examine the details of the derivation here—a good treatment can be found

3For applications where an FFT is executed by a processor, a subtraction is considered equivalent to an
addition. In fact, the hardware required for a subtracter is nearly identical to that required for an adder.

CHAPTER 2. THE FOURIER TRANSFORM 22

A

B

W

X = A + B

Y = (A − B)W

Figure 2.9: A radix-2 Decimation In Frequency (DIF) butterfly

in Oppenheim and Schafer (1989). Figure 2.9 shows a radix-2 DIF butterfly. A and B are

inputs, X and Y are outputs, and W is a complex constant.

X = A + B (2.53)

Y = (A − B)W (2.54)

The radix-2 DIF butterfly also requires one complex multiplication and two complex addi-

tions, like the DIT butterfly.

Radix-4

When N = 4k, we can employ a radix-4 common-factor FFT algorithm by recursively

reorganizing sequences into N ′ × N ′/4 arrays. The development of a radix-4 algorithm is

similar to the development of a radix-2 FFT, and both DIT and DIF versions are possible.

Rabiner and Gold (1975) provide more details on radix-4 algorithms.

Figure 2.10 shows a radix-4 decimation in time butterfly. As with the development of

the radix-2 butterfly, the radix-4 butterfly is formed by merging a 4-point DFT with the

associated twiddle factors that are normally between DFT stages. The four inputs A, B,

C, and D are on the left side of the butterfly diagram and the latter three are multiplied by

the complex coefficients Wb, Wc, and Wd respectively. These coefficients are all of the same

form as the WN of Eq. 2.14, but are shown with different subscripts here to differentiate

the three since there are more than one in a single butterfly.

CHAPTER 2. THE FOURIER TRANSFORM 23

A

B

C

D

V

W

X

Y

Wb

Wc

Wd

Figure 2.10: A radix-4 DIT butterfly

The four outputs V , W , X, and Y are calculated from,

V = A + BWb + CWc + DWd (2.55)

W = A − iBWb − CWc + iDWd (2.56)

X = A − BWb + CWc − DWd (2.57)

Y = A + iBWb − CWc − iDWd. (2.58)

The equations can be written more compactly by defining three new variables,

B′ = BWb (2.59)

C ′ = CWc (2.60)

D′ = DWd, (2.61)

leading to,

V = A + B′ + C ′ + D′ (2.62)

W = A − iB′ − C ′ + iD′ (2.63)

X = A − B′ + C ′ − D′ (2.64)

Y = A + iB′ − C ′ − iD′. (2.65)

It is important to note that, in general, the radix-4 butterfly requires only three complex

CHAPTER 2. THE FOURIER TRANSFORM 24

FFT Radix Number of Complex Multiplications Required

2 0.5000 MN − (N − 1)

4 0.3750 MN − (N − 1)

8 0.3333 MN − (N − 1)

16 0.3281 MN − (N − 1)

Table 2.2: Number of multiplications required for various radix algorithms

multiplies (Eqs. 2.59, 2.60, and 2.61). Multiplication by i is accomplished by a swapping of

the real and imaginary components, and possibly a negation.

Radix-4 algorithms have a computational advantage over radix-2 algorithms because one

radix-4 butterfly does the work of four radix-2 butterflies, and the radix-4 butterfly requires

only three complex multiplies compared to four multiplies for four radix-2 butterflies. In

terms of additions, the straightforward radix-4 butterfly requires 3 adds × 4 terms = 12

additions compared to 4 butterflies × 2 = 8 additions for the radix-2 approach. With a little

cleverness and some added complexity, however, a radix-4 butterfly can also be calculated

with 8 additions by re-using intermediate values such as A + CWc, A−CWc, BWb + DWd,

and iBWb− iDWd. The end result is that a radix-4 algorithm will require roughly the same

number of additions and about 75% as many multiplications as a radix-2 algorithm. On

the negative side, radix-4 butterflies are significantly more complicated to implement than

are radix-2 butterflies.

Higher radices

While radix-2 and radix-4 FFTs are certainly the most widely known common-factor algo-

rithms, it is also possible to design FFTs with even higher radix butterflies. The reason

they are not often used is because the control and dataflow of their butterflies are more

complicated and the additional efficiency gained diminishes rapidly for radices greater than

four. Although the number of multiplications required for an FFT algorithm by no means

gives a complete picture of its complexity, it does give a reasonable first approximation.

With M = log2 N , Table 2.2 shows how the number of complex multiplications decreases

with higher radix algorithms (Singleton, 1969). It is interesting to note that the number of

CHAPTER 2. THE FOURIER TRANSFORM 25

N FFT Radix Real Multiplies Real Additions

Required Required

256 2 4096 6144

256 4 3072 5632

256 16 2560 5696

512 2 9216 13,824

512 8 6144 12,672

4096 2 98,304 147,456

4096 4 73,728 135,168

4096 8 65,536 135,168

4096 16 61,440 136,704

Table 2.3: Arithmetic required for various radices and transform lengths

multiplications is always O(MN), and only the constant factor changes with the radix.

To give a more complete picture of the complexity, the number of additions must also

be considered. Assuming that a complex multiplication is implemented with four real

multiplications and two real additions, Table 2.3, from Burrus and Parks (1985), gives the

number of real multiplications and real additions required to calculate FFTs using various

radices. Although the number of multiplications decreases monotonically with increasing

radix, the number of additions reaches a minimum and then increases.

Further reductions in computational complexity are possible by simplifying trivial mul-

tiplications by ±1 or ±i. With questionable gains, multiplications by π/4, 3π/4, 5π/4, and

7π/4 can also be modified to require fewer actual multiplications.

2.4.2 Prime-Factor Algorithms

In this section, we consider prime-factor FFTs which are characterized by N1 and N2 being

relatively prime, meaning that they have no factors in common except unity, and—this

being their great advantage—have no twiddle factors. The generation of a prime-factor

FFT requires a careful choice of the mapping variables A, B, C, and D used in Eqs. 2.34

and 2.35.

CHAPTER 2. THE FOURIER TRANSFORM 26

For convenience, we repeat Eq. 2.37 which shows the DFT of x(n) calculated by the

2-dimensional DFTs of x̂(n1, n2),

X̂(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
An1Ck1

N WAn1Dk2

N WBn2Ck1

N WBn2Dk2

N . (2.66)

For the twiddle factors to be eliminated, the variables A, B, C, and D must be chosen such

that,

AC mod N = N2 (2.67)

BD mod N = N1 (2.68)

AD mod N = 0 (2.69)

BC mod N = 0. (2.70)

When Eqs. 2.67 and 2.68 are satisfied, they will reduce their respective WN terms into

the kernels of their respective 1-dimensional DFTs. Equations 2.69 and 2.70 force their

respective WN terms to equal unity, which removes the twiddle factors from the calculation.

The methods for finding suitable values are not straightforward and require the use of

the Chinese Remainder Theorem (CRT). Burrus (1977) and Blahut (1985) provide some

details on the use of the CRT to set up a prime-factor FFT mapping. Following Burrus

(1977), one example of a proper mapping is to use,

A = αN2 (2.71)

B = βN1 (2.72)

C = γN2 (2.73)

D = δN1 (2.74)

CHAPTER 2. THE FOURIER TRANSFORM 27

with α, β, γ, and δ being integers. Equation 2.66 then becomes,

X̂(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
αN2n1γN2k1

N WαN2n1δN1k2

N

W βN1n2γN2k1

N W βN1n2δN1k2

N (2.75)

=

N1−1∑
n1=0

N2−1∑
n2=0

x̂(n1, n2)W
αN2n1γk1

N1
× 1 × 1 × W βN1n2δk2

N2
(2.76)

=

N1−1∑
n1=0

[
N2−1∑
n2=0

x̂(n1, n2)W
βδN1n2k2

N2

]
WαγN2n1k1

N1
. (2.77)

Equation 2.77 follows since WN2

N = WN1
and WN1

N = WN2
, and also because WαN2δN1n1k2

N =

WADn1k2

N = 1 and W βN1γN2n2k1

N = WBCn2k1

N = 1, for any values of the integers n1, n2, k1,

and k2.

By comparing Eq. 2.77 with Eq. 2.43, it should be clear that the prime-factor algorithm

does not require twiddle factors. Equation 2.78 is diagrammed below showing the N1-point

and N2-point DFTs.

X̂(k1, k2) =

N1−1∑
n1=0

⎡
⎢⎢⎢⎢⎣

N2−1∑
n2=0

x̂(n1, n2)W
βδN1n2k2

N2︸ ︷︷ ︸
N2−point DFT

⎤
⎥⎥⎥⎥⎦WαγN2n1k1

N1

︸ ︷︷ ︸
N1−point DFT

(2.78)

A considerable disadvantage of prime-factor FFTs that is not readily apparent from

Eq. 2.78 is that the mappings for x to x̂ and X to X̂ are now quite complicated and involve

either the use of length-N address mapping pairs, or significant computation including use

of the mod function which is, in general, difficult to calculate. 4

4A straightforward calculation of the mod function requires a division, a multiplication, and a subtraction.
The calculation of a division requires multiple multiplications and additions.

CHAPTER 2. THE FOURIER TRANSFORM 28

n1
n2

0 1 2 3

0

1

2

x(0) x(3) x(6) x(9)

x(1)

x(5)x(2)

x(10)x(7)x(4)

x(8) x(11)

(a) x to x̂ mapping

k1
k2

0 1 2 3

0

1

2

X(0) X(9) X(6) X(3)

X(7)X(10)X(1)X(4)

X(8) X(5) X(2) X(11)

(b) X to X̂ mapping

Figure 2.11: Input and output mappings for a 12-point prime-factor FFT

Example 1 Prime-Factor FFT with N = 12 = 3 · 4

To illustrate the steps required to develop a prime-factor FFT, consider an example with

N = 12 = 3 · 4. We note that, as required for prime-factor FFTs, the factors N1 = 3 and

N2 = 4 have no common factors except unity. Following Oppenheim and Schafer (1989),

we select A = N2 = 3, B = N1 = 4, C = 9, and D = 4 so that,

n = 3n1 + 4n2 mod N (2.79)

k = 9k1 + 4k2 mod N. (2.80)

Two mappings are required for a prime-factor FFT. One map is needed for the trans-

form’s inputs and a second map is used for the transform’s outputs. The prime-factor FFT

can then be calculated in the following four steps:

1. Organize the inputs of x(n) into the 2-dimensional array x̂(n1, n2) according to the

map shown in Fig. 2.11(a).

2. Calculate the N1 N2-point DFTs of the columns of x̂.

3. Calculate the N2 N1-point DFTs of the rows of x̂.

4. Unscramble the outputs X(k) from the array X̂(k1, k2) using the map shown in

CHAPTER 2. THE FOURIER TRANSFORM 29

Fig. 2.11(b).
�

Since the prime-factor FFT does not require multiplications by twiddle factors, it is

generally considered to be the most efficient method for calculating the DFT of a sequence.

This conclusion typically comes from the consideration of only the number of multiplications

and additions, when comparing algorithms. For processors with slow multiplication and

addition times, and a memory system with relatively fast access times (to access long

programs and large look-up tables), this may be a reasonable approximation. However, for

most modern programmable processors, and certainly for dedicated FFT processors, judging

algorithms based only on the number of multiplications and additions is inadequate.

2.4.3 Other FFT Algorithms

This section briefly reviews three additional FFT algorithms commonly found in the litera-

ture. They have not been included in either the common-factor or the prime-factor sections

since they do not fit cleanly into either category.

Winograd Fourier Transform Algorithm (WFTA) The WFTA is a type of prime-

factor FFT where the building block DFTs are calculated using a very efficient convolution

method. Blahut (1985) provides a thorough treatment of the development of the WFTA,

which requires the use of advanced mathematical concepts. In terms of the number of

required multiplications, the WFTA is remarkably efficient. It requires only O(N) multi-

plications for an N -point DFT. On the negative side, the WFTA requires more additions

than previously-discussed FFTs and has one of the most complex and irregular structures

of all FFT algorithms.

Split-radix For FFTs of length N = pk, where p is generally a small prime number and

k is a positive integer, the split-radix FFT provides a more efficient method than standard

common-factor radix-p FFTs (Vetterli and Duhamel, 1989). Though similar to a common-

factor radix-p FFT, it differs in that there are not logp N distinct stages. The basic idea

behind the split-radix FFT is to use one radix for one decimation-product of a sequence, and

use other radices for other decimation-products of the sequence. For example, if N = 2k, the

split-radix algorithm uses a radix-2 mapping for the even-indexed members and a radix-4

mapping for the odd-indexed members of the sequence (Sorensen et al., 1986). Figure 2.12

CHAPTER 2. THE FOURIER TRANSFORM 30

A

B

C

D

V

W

X

Y

Wa

Wb

Figure 2.12: A split-radix butterfly

shows the unique structure resulting from this algorithm (Richards, 1988). For FFTs of

length N = 2k, the split-radix FFT is more efficient than radix-2 or radix-4 algorithms, but

it has a more complex structure, as can be seen from the butterfly.

Goertzel DFT Though not normally considered a type of FFT algorithm because it

does not reduce the computation required for the DFT below O(N2), the Goertzel method

of calculating the DFT is very efficient for certain applications. Its primary advantage is

that it allows a subset of the DFT’s N output terms to be efficiently calculated. While

it is possible to use a regular FFT to more efficiently calculate a subset of the N output

values; in general, the computational savings are not significant—less than a factor of two.

Oppenheim and Schafer (1989) present a good overview of the Goertzel DFT algorithm.

2.5 Summary

This chapter presents an introduction to three of the most popular varieties of the Fourier

transform, namely, the continuous Fourier transform, the Discrete Fourier Transform (DFT),

and the Fast Fourier Transform (FFT). Since the continuous Fourier transform operates on

(and produces) continuous functions, it cannot be directly used to transform measured data

samples. The DFT, on the other hand, operates on a finite number of data samples and is

therefore well suited to the processing of measured data. The FFT comprises a family of

algorithms which efficiently calculate the DFT.

After introducing relevant notation, an overview of the common-factor and prime-factor

CHAPTER 2. THE FOURIER TRANSFORM 31

algorithm classes is given, in addition to other fast DFT algorithms including WFTA, split-

radix, and Goertzel algorithms.

Chapter 3

Low-Power Processors

3.1 Introduction

Until the early to mid-90s, low-power electronics were, for the most part, considered useful

only in a few niche applications largely comprising small personal battery-powered devices

(e.g., watches, calculators, etc.). The combination of two major developments made low-

power design a key objective in addition to speed and silicon area. The first development

was the advancement of submicron CMOS technologies which produced chips capable of

much higher operating power levels, in spite of a dramatic drop in the energy dissipated per

operation. The second development was the dramatic increase in market demand for, and

the increased capabilities of, sophisticated portable electronics such as laptop computers

and cellular phones. Since then, market pressure for low-power devices has come from both

ends of the “performance spectrum.” Portable electronics drive the need for lower power

due to a limited energy budget set by a fixed maximum battery mass, and high-performance

electronics also require lower power dissipation, but for a different reason: to keep packaging

and cooling costs reasonable.

This chapter considers circuits fabricated only using Complementary Metal Oxide Semi-

conductor (CMOS) technologies because of its superior combination of speed, cost, avail-

ability, energy-efficiency, and density. Other available semiconductor technologies such as

BiCMOS, GaAs, and SiGe generally have higher performance, but also have characteris-

tics such as significant leakage or high minimum-Vdd requirements that make them far less

suitable for low-power applications.

32

CHAPTER 3. LOW-POWER PROCESSORS 33

3.1.1 Power vs. Energy

Before beginning a discussion of low-power electronics, it is worthwhile to first review the

two key measures related to power dissipation, namely, energy and power. Energy has units

of joules and can be related to the amount of work done or electrical resources expended to

perform a calculation. Power, on the other hand, is a measure of the rate at which energy

is consumed per unit time, and is typically expressed in units of watts, or joules/sec.

In an effort to describe the dissipative efficiency of a processor, authors frequently cite

power dissipation along with a description of the processor’s workload. The power figure by

itself only specifies the rate at which energy is consumed—without any information about

the rate at which work is being done. Energy, however, can be used as a measure of exactly

how efficiently a processor performs a particular calculation. The drawback of considering

energy consumption alone is that it gives no information about the speed of a processor. In

order to more fully compare two designs in a single measure, the product energy × time is

often used, where time is the time required to perform a particular operation.

A more general approach considers merit functions of the form energyx × timey and

energyx × timey ×areaz where x, y, and z vary depending on the relative importance of the

parameters in a particular application (Baas, 1992).

3.2 Power Consumption in CMOS

Power consumed by digital CMOS circuits is often thought of as having three compo-

nents. These are short-circuit, leakage, and switching power (Weste and Eshraghian, 1985;

Chandrakasan and Brodersen, 1995). We also consider a fourth, constant-current power.

Figure 3.1 shows a CMOS inverter with its load modeled by the capacitor Cload. The volt-

age of the input, Vin, is switched from high to low to high, causing three modes of current

flow. Paths of the three types of current flow are indicated by the arrows. Details of the

power dissipation mechanisms are given in the following three sections.

In most CMOS circuits, switching power is responsible for a majority of the power

dissipated. Short-circuit power can be made small with simple circuit design guidelines. For

standard static circuits, leakage power is determined primarily by Vt and the sub-threshold

current slope of transistors. Constant-current power can often be eliminated from digital

circuits through alternate circuit design. The total power consumed by a circuit is the sum

CHAPTER 3. LOW-POWER PROCESSORS 34

Active

Short-circuit

LeakageVin

Cload

Figure 3.1: Three primary CMOS power consumption mechanisms demonstrated with an
inverter

of all four components:

PTotal = PShort−Circuit + PLeakage + PSwitching + PConstant−Current. (3.1)

3.2.1 Short-Circuit Power

Many types of CMOS circuits dissipate short-circuit power while switching from one state

to another. While most static circuits do not allow significant current to flow when they are

in one of their two binary states, current typically flows directly from Vdd to Gnd during

the brief period when the circuit is transitioning between states. For the case of a static

inverter, as shown by the single dashed line in Fig. 3.1, current passes directly through the

PMOS and NMOS transistors from Vdd to Gnd .

Short-circuit power is a strong-function of the rise and fall times of the input(s). A

slowly switching input signal keeps the circuit in the intermediate state for a longer period

and thereby causes more charge to be shorted to Gnd . The total charge lost also increases

with wider-channel transistors, but the width is normally determined by the magnitude of

the load being “driven,” and thus is not a parameter that can be significantly or easily

optimized to reduce short-circuit power.

3.2.2 Leakage Power

While most CMOS circuits are in a stable state, the gates and drains of transistors are

at a potential of either Vdd or Gnd . Transistors with Vgs = 0 normally are considered to

CHAPTER 3. LOW-POWER PROCESSORS 35

have zero drain current. Although this approximation is often sufficient, it is not exact.

Transistors with Vgs = 0 and Vds �= 0 have a non-zero “sub-threshold” drain current, Ids.

This current is also called the leakage current and is indicated with dotted lines in Fig. 3.1.

The inverter shown has two normal states, one with Vin = 0 and Vout = Vdd , and a second

with Vin = Vdd and Vout = 0. In the first case, VgsNMOS
= 0 and VdsNMOS

= Vdd , so

any Ids current passing through the NMOS transistor is leakage current. Similarly, with

Vin = Vdd , the leakage current of the PMOS transistor flows from Vdd to the drain of the

NMOS transistor which is at Gnd .

Another source of leakage current is the reverse-biased parasitic diode caused by the

p-substrate (or p-well) to n-well (or n-substrate) junction. This current is independent of

the states of circuits and depends only on the process characteristics, diode junction area,

temperature, and the potential difference between the p-substrate and n-well.

3.2.3 Switching Power

For most CMOS circuits, the majority of current flowing from the supply is used to charge

the load to Vdd . In Fig. 3.1, this occurs when Vin is switched from high to low and charge

flows through the PMOS transistor from Vdd to Cload. In the other half of the cycle, when

the output transitions to 0V, charge flows from Cload through the NMOS transistor to Gnd .

Charging Cload to Vdd requires Q = CV = CloadVdd coulombs of charge. Hence, the supply

expends QV = CloadVddVdd = CloadV
2
dd joules of energy charging Cload to Vdd . The energy

stored on the capacitor is dissipated when the node is driven to Gnd . Therefore, the total

energy dissipated during one cycle is CloadV
2
dd .

If a node is switching at f Hz, the switching power consumed by that node is,

Pswitching = Cload V 2
dd f W. (3.2)

Since most nodes do not switch every cycle, the activity, a, of a node is defined as the

fraction of cycles that a node switches, and Eq. 3.2 becomes,

Pswitchingnode
= a Cload V 2

dd f W. (3.3)

CHAPTER 3. LOW-POWER PROCESSORS 36

InA

InB

Out

Figure 3.2: A constant-current NOR gate

The total power is the sum of the powers consumed by individual nodes. Assuming Vdd and

f are constant over all nodes,

Pswitchingtotal
=

∑
allnodes

a Cload V 2
dd f W (3.4)

= V 2
dd f

∑
allnodes

a Cload W. (3.5)

3.2.4 Constant-Current Power

The fourth category of power consumption in digital circuits that can often be removed

through alternate circuit design is constant-current power. Circuits that dissipate this type

of power contain a current path that may conduct current even when the circuit is in a

stable, non-transitory state. Frequently, the speed of the circuit is roughly proportional to

the magnitude of current flow, so there is a strong incentive to design high-power circuits

when using this methodology. An example of this style includes pseudo-NMOS circuits,

which may conduct constant-current depending on the state of the circuit. Figure 3.2

shows a two-input NOR gate which dissipates power when either InA or InB is high, even

while the gate is inactive. In pure NMOS technology, the current source would be an NMOS

transistor with its gate tied to Vdd , and in pseudo-NMOS, it would be a PMOS transistor

with its gate tied to Gnd . Because the current goes to zero when both inputs are low, the

CHAPTER 3. LOW-POWER PROCESSORS 37

Supply voltage Switching power Power reduction

(Volts) (relative)

5.0 1.00 —

3.3 0.44 2.3×
2.5 0.25 4.0×
1.0 0.04 25×
0.4 0.006 156×

Table 3.1: Power reduction through lower supply voltages at a constant clock speed

load could also be modeled as a resistor. Another example circuit style which consumes

constant current is an ECL-style circuit which uses differential pairs fed by current sources.

3.3 Common Power Reduction Techniques

This section presents a number of popular approaches which reduce the power consumption

of circuits and processors. Although reducing the supply voltage is actually a specific

power-reducing technique that could easily fit into several of the categories, it is given a

separate subsection and placed first because it provides a straightforward way to tradeoff

performance and energy-efficiency, and is often leveraged in other approaches.

3.3.1 Power Supply Reduction

A common and very effective method of reducing the energy consumption of a circuit is

to reduce its supply voltage. Equation 3.5 shows the switching power ∝ V 2
dd relationship

that makes this technique so effective. Table 3.1 illustrates the power reductions possible

through voltage scaling at a constant clock frequency.

A major drawback of this approach is that, assuming no other changes are made, circuits

operate more slowly as the supply voltage decreases (in fact, much more slowly as Vdd

approaches Vt, the thresholds of the MOS transistors). Another major drawback is that

some circuit styles can not function at low supply voltages.

CHAPTER 3. LOW-POWER PROCESSORS 38

3.3.2 Algorithmic and Architectural Design

Methods which reduce the power consumed by a processor through algorithmic or archi-

tectural modifications are among the most effective because of the enormous reductions

in computational complexity that are sometimes possible. Several examples are given to

illustrate this approach.

Operation count reduction

One of the most obvious, but difficult, approaches to reducing power at constant throughput

is to reduce the number of operations necessary to complete a given workload. In an

already well-designed system, however, this method provides little benefit since the number

of operations should already have been minimized to maximize performance. However, if

reducing the operation count is looked at as a power-saving method, dramatic savings are

possible. If (i) the number of operations is reduced to a fraction r (e.g., a 10% reduction

gives r = 0.9), (ii) performance is proportional to the supply voltage, and (iii) energy

consumption is proportional to V 2
dd; the resulting energy consumption will be proportional

to r3. This savings comes from a factor of r energy reduction due to fewer operations, and

an energy reduction of r2 due to a supply voltage reduction by r.

Disabling inactive circuits

For processors in which all functional units are not active continuously, power can be saved

by switching off inactive circuits. Many circuits can be switched off by disabling the clock

signal through the ANDing of the clock with an enable signal, as Fig. 3.3 shows. The pri-

mary drawback of this method, commonly called clock gating, is that the “clock-qualifying”

circuits introduce clock skew into the timing budget that must be carefully managed. Also,

the required control signals add additional, albeit manageable, complexity. Clearly, the

technique works best in situations where large power-consuming functional units are un-

used a significant fraction of the time. Tsern (1996) reports a 2× reduction in power through

clock gating in a video decoder chip.

Parallelizing and pipelining

Circuits normally can be made more energy-efficient if reduced performance is acceptable. If

the workload can be parallelized onto multiple processors, and if the extra cost is acceptable,

CHAPTER 3. LOW-POWER PROCESSORS 39

Functional

Functional

Unit

Unit

Global

Clock
Clock′

Clock′

Clock Enable
Clock Enable

Figure 3.3: Functional units using gated clocks

there is an opportunity to reduce the total power at the same throughput by operating par-

allel processors. Parallelizing and pipelining are actually methods to increase performance,

but are described here since they are often cited as techniques to reduce power. If the

performance of a processor is increased by a factor p through parallelizing or pipelining,

and a reduction in the supply voltage by p results in circuits that run 1/p as fast, then the

overall energy efficiency is increased by a factor p with constant performance.

Pipelining can be thought of as a type of parallelism where instead of making dupli-

cate copies of hardware units, the units are partitioned “in time,” permitting multiple

calculations to take place in a hardware unit at one time. Pipelining is accomplished by

segmenting functional units into stages and inserting latches between the stages. Neglecting

additional latency caused by the added latches, throughput can be multiplied by the num-

ber of smaller blocks a hardware unit is partitioned into. For example, if a block is divided

into two pipeline stages, a new latch is inserted between the two halves, and the clock speed

is doubled; two calculations are then performed during the time of an original clock cycle.

The primary drawbacks with pipelining are: (i) difficulty managing higher-speed clocks,

(ii) difficulty partitioning some circuit structures after a certain pipeline depth has been

reached, and (iii) a near inability to partition some structures at all (e.g., memories).

Chandrakasan et al. (1992) were early proponents of using pipelining to lower power

dissipation, applying it to the design of a chipset for a portable multimedia terminal (Chan-

drakasan et al., 1994).

CHAPTER 3. LOW-POWER PROCESSORS 40

Reduction of data word precision

For many applications, the required data precision is less than the 16 or 32 bits typically

found in present day programmable processors. Therefore, a designer can choose the word

width in a special-purpose processor such that no unnecessary precision is calculated. For

most types of functional units, the power savings from reducing the number of bits in data

words is linear in word width. For other structures, such as multipliers, the energy savings

are proportional to (word width)2, and a substantial reduction of power is possible.

As an example of this technique, a video subband decoder chip by Gordon and Meng

(1995) performs YUV to RGB conversion using filter coefficients with only two bits of

precision, without a noticeable degradation in visual quality.

Data locality

A processor spends some amount of its energy moving data and/or instructions between

where they are stored and where they are used. If needed information can be stored closer

to where it is used, then there is an opportunity to reduce communication energy. This

approach works effectively only if the data exhibit some amount of temporal locality, meaning

a subset of the global data is frequently referenced over a relatively short time interval.

General-purpose processors have long made use of locality for performance reasons and

on many different levels (Hennessy and Patterson, 1996). Register files are typically fast,

multiple-ported memories used to store frequently-used data. Data caches and instruction

caches are larger memories which hold data and instructions respectively, and are frequently

found in multiple “levels” (e.g., level-1 cache, level-2 cache, etc.). Main memory functions

as a buffer for information stored in mass storage such as disk or tape. Networks add

more layers to the hierarchy with local-area networks being faster but less far-reaching than

wide-area networks.

While exploiting locality often has a significant effect on performance, it can also de-

crease power dissipation because it reduces the energy required for communication.

3.3.3 Circuit Design

Techniques to achieve low-power dissipation through circuit design are difficult to summarize

because methods do not generalize well across different circuit types. For example, it

is likely that the best approaches to reducing power for a memory and a bus driver are

CHAPTER 3. LOW-POWER PROCESSORS 41

different. Nevertheless, this section reviews three common circuit design approaches that

reduce energy dissipation across a wide variety of circuit types.

Transistor sizing

As illustrated in Fig. 3.1 on page 34, the load CMOS circuits drive is normally capaci-

tive. This capacitance has three primary components: (i) gate capacitance, (ii) diffusion

capacitance, and (iii) interconnection capacitance,

Ctotal = Cgate + Cdiffusion + Cinterconnect . (3.6)

The speed of a CMOS gate can be approximated by,

Delay ≈ Ctotal/I (3.7)

≈ (Cgate + Cdiffusion + Cinterconnect)/I (3.8)

∝ (Cgate + Cdiffusion + Cinterconnect)/width (3.9)

∝ (Cgate + Cdiffusion)/width + Cinterconnect/width. (3.10)

Typically, transistors in digital circuits have minimum-length channels, but channel widths

are varied according to the needed drive current, since the drain current I is essentially

proportional to the width. For wide transistors, both the gate and diffusion capacitances

are roughly proportional to the widths of the transistor. For a circuit dominated by gate

and diffusion capacitance, reducing transistor widths reduces energy, and from Eq. 3.10,

does not have a large impact on delay. However, for circuits whose load is dominated by

interconnection capacitance, narrowing of the transistors again causes energy to be reduced,

but unfortunately, also causes the delay to increase proportionately.

Reduced voltage swing

Although Eq. 3.5 states that switching power is proportional to V 2
dd , it is actually propor-

tional to VddVswing , where Vswing is the difference between logic “0” and logic “1” voltages.

For many CMOS circuits, the voltage swing is Vdd , and the approximation is accurate. If the

nodes of a circuit swing through small voltage variations, the energy dissipation is reduced

significantly (Matsui et al., 1994; Matsui and Burr, 1995). The primary difficulty with this

approach is that circuits to detect small voltage differences are typically complex and often

CHAPTER 3. LOW-POWER PROCESSORS 42

require special timing signals. Therefore, reduced-swing circuits are best used when driving

a large capacitive load and the extra effort is justified—such as with buses or high-fan-in

topologies. As an example, Yamauchi et al. (1995) present a differential bus structure which

operates with low voltage swings. To further save power, the scheme re-uses charge in the

bus to precharge other wires, rather than dumping charge to Gnd every cycle.

Elimination of constant current sources

As mentioned in Sec. 3.2.4, some circuits consume power even when they are in a stable

state. CMOS circuits usually can be redesigned to eliminate this inefficient characteristic.

However, since constant-current circuits can be very fast, redesigning the circuit may reduce

its speed.

3.3.4 Fabrication Technology

The optimization of various aspects of CMOS fabrication technologies can result in dra-

matic improvements in energy-efficiency. Although this is probably the most difficult and

expensive way to reduce power, it also gives one of the most significant gains.

Technology scaling

The advancement of fabrication technologies is nearly synonymous with the reduction of

minimum feature sizes. Although scaling entails a nearly complete overhaul of a CMOS

process, it gives substantial improvements to the most critical of integrated circuit param-

eters, namely, area, speed, and power. If the scale of a fabrication technology is reduced

by a factor α (e.g., 0.5 µm scaled to 0.25 µm implies α = 2), then, to first order, using

constant-field scaling where the supply voltage is reduced by 1/α; the area is reduced by

1/α2, delay decreases by 1/α and the energy consumption is decreased by 1/α3 (Weste and

Eshraghian, 1985).

Reduction of interconnection capacitance

As feature sizes shrink, the percentage of total load capacitance attributable to wiring

capacitance grows. The flat-plate capacitance between an interconnect layer and an adjacent

surface can be written as,

C = εrε0
area

t
, (3.11)

CHAPTER 3. LOW-POWER PROCESSORS 43

where εr is the relative permittivity of the dielectric, ε0 is the permittivity of free space, area

is the bottom-plate area of the interconnect, and t is the thickness of the dielectric material.

Since the capacitance is proportional to the permittivity, ε = εr ·ε0, of the dielectric between

the interconnect and the substrate, a low ε material will give a lower load capacitance and

result in lower power dissipation and higher circuit speed. More accurate models which

take into account fringing capacitance and interconnection aspect ratios are given by Barke

(1988).

SiO2 is by far the most commonly used dielectric material in CMOS chips, largely

because it is easy to grow or deposit in standard processes. For thermally-grown oxide,

εr ≈ 3.9; values for chemical-vapor-deposited (CVD) oxide are in the range 4.2–5.0. The

material SiOF holds some promise as a low-dielectric material; values of εr are in the range

of 3.0–3.6. Ida et al. (1994) report a process for the deposition of SiOF in deep sub-micron

CMOS processes that achieves a 16% reduction in wiring capacitance.

Ultra Low Power (ULP) CMOS

ULP CMOS is an approach to producing very low-power CMOS circuits by reducing the

supply voltage to several hundred millivolts (Burr and Peterson, 1991b; Burr and Shott,

1994). To maintain good performance at low supply voltages, the threshold voltages of

MOS transistors must also be reduced. Unfortunately, this requires a change in the CMOS

fabrication process. Because variations in Vt, when operating in a low-Vdd and low-Vt

environment, cause significant variations in performance, the ULP approach relies on the

biasing of transistor bodies to adjust thresholds. Tuning through body bias can cancel

threshold changes due to temperature shifts and inter-die process variations. Additionally,

thresholds can be adjusted to optimize power dissipation and/or performance according

to circuit activity. Figure 3.4 shows a simplified cross-section of an NMOS and a PMOS

transistor with separate well biases.

A side effect of reducing Vt is a large increase in leakage current when transistors are

cutoff, and a much lower (Ids@ |Vgs| = Vdd)/(Ids@Vgs = 0), or Ion/Ioff ratio. A key tradeoff

made by ULP technology is the acceptance of increased leakage power in return for greatly

reduced active power. For many applications, this results in a net power reduction. The

presence of large leakage currents requires the modification of some circuits to maintain

correct operation, however.

The primary drawbacks to ULP CMOS are that it requires (i) a change in the fabrication

CHAPTER 3. LOW-POWER PROCESSORS 44

p+p+n+n+

p n

Vp-well Vn-well

Figure 3.4: Cross-section of ULP NMOS and PMOS transistors

process, (ii) additional circuitry to adjust body potentials, and (iii) additional routing of

separate Vp-well and Vn-well nodes.

Silicon On Insulator technology (SOI)

SOI technology is different from standard bulk processes in that for SOI, the active silicon

sits on an insulating layer above the die’s substrate, which insulates the source, drain, and

channel regions from the substrate. One of the largest benefits of the technology is that

diffusion capacitances are greatly reduced, as compared to devices fabricated in a standard

bulk process where diffusion regions are uninsulated from the substrate. Since diffusion

capacitance contributes a sizeable fraction to the total load capacitance, Cload, both Cload

and the switching power are significantly reduced. SOI devices have roughly 25% less

switched capacitance which results in a significant reduction in power. In addition, the

smaller Cload makes circuits faster which can be traded-off for even lower power dissipation

through reduced supply voltages. Using an SOI technology running at Vdd = 1.5 V as

a reference, a similar bulk process would have to run at Vdd = 2.15 V to achieve the

same performance—which would increase its overall power consumption to 2.7× greater

than the SOI’s (Antoniadis, 1997). Though not stated by Antoniadis, it appears that

the improvement would be about 1.9× if the comparison were made relative to bulk at

Vdd = 1.5 V.

The SOI device’s structure allows new device styles to be implemented more easily. One

possibility is a device whose gate is connected to the transistor’s body. Called DT-CMOS

or VTMOS (Assaderaghi et al., 1994), the transistors’ Vt s are lowered while the device is

conducting and raised while the device is off. One problem with the approach is that the

supply voltage is limited to Vdd < 0.7 V since the source to gate-body is now a forward-

biased diode. Antoniadis also points out a limitation on transistor width due to the high

CHAPTER 3. LOW-POWER PROCESSORS 45

body resistance, since body contacts must be made at the short end(s) of a wide transistor.

With significant added complexity, a second gate beneath the channel, or back gate, can

be added to the device. This back gate can then be connected to the front gate to increase

current drive, but it appears this approach does not give a larger current drive per input

capacitance ratio, compared to standard SOI devices (Antoniadis, 1997).

A third possible enhancement to standard SOI is to use a back gate structure, but adjust

the potential according to circuit activity, or expected activity, rather than the state of each

individual device. Known as SOIAS (Vieri et al., 1995; Yang et al., 1997), this approach

appears promising, though it has the added complexity of back-gate control.

The primary drawback of SOI is that it requires special wafers which have the insulating

layer built in, as well as considerable changes to the fabrication process. The extra cost of

the wafers has been a barrier to the use of SOI, but as the prices of wafers continue to drop,

this technology will no doubt gain in popularity.

3.3.5 Reversible Circuits

Reversible circuits can be broadly defined as those circuits in which a computation can be

performed producing a result, and then every step taken in the forward computation is

“un-done” in reverse order. The reason for undoing the calculation is that under certain

conditions, some of the energy consumed in the forward computation can be recovered

during the reversed half of the cycle. Except for the simplest circuits, the technique requires

the saving of intermediate values that were generated during the forward computation.

These circuits are also called adiabatic because in the limit as the operating frequency goes

to zero, they theoretically can operate with heat production (or energy dissipation) that

approaches zero. They are also called charge-recycling circuits for obvious reasons. Because

one approach uses multi-phase signals resembling clocks, some reversible circuits are also

called clock-powered circuits.

To explain briefly how reversible circuits work, we first compare them to a common

static CMOS inverter. In the inverter of Fig. 3.1 on page 34, the PMOS transistor acts as a

switch and, when activated, connects the output to Vdd to drive the output high. Similarly,

when activated, the NMOS transistor connects the output to Gnd to drive the output to a

low voltage. In the reversible circuit case, MOS transistors are also used as switches between

the output and “higher-voltage” and “lower-voltage” power sources. However, that is about

all that is common to both circuits. For reversible circuits, the supply is not a fixed voltage

CHAPTER 3. LOW-POWER PROCESSORS 46

A

A

Out

Vpulse

Cload

Figure 3.5: A reversible logic gate

but instead is at a voltage that ramps up and then ramps down. Rise and fall times of

the supply are generally much longer than the rise and fall times of typical gate outputs.

In Fig. 3.5, Vpulse is this supply node. When “pulling up” its output, the circuit uses a

network of transistors (a transmission gate in the simple example shown) to conditionally

connect its output to the ramping supply. The ramping times must be slow enough so

that the voltage drop across the transistors is small. In the second half of the cycle, the

supply ramps downward and the charge stored in the capacitive load is returned to the

supply—which must then recover and reuse the “borrowed” energy.

The signals A and A are the inputs to the gate and must be stable throughout the rise,

high, and fall periods of Vpulse. This requirement is necessary to keep the voltage drop

between Vpulse and Out low. Vpulse is generated by a resonant LC circuit where C is the

capacitance of on-chip circuits, and L is a large inductor, normally located off-chip.

Solomon (1994) summarizes three key requirements for efficient reversible circuits first

described by Hall (1992):

• Gate voltages can be changed only while source-drain voltages are zero.

• Source-drain voltages can only be changed while transistors are cutoff.

• Voltages must be ramped slowly to minimize P = V I.

Solomon then gives the following reasons why MOSFETs are especially well suited for use in

reversible circuits, compared to other types of devices: (i) current can flow in both directions

through the source and drain terminals, (ii) the source to drain offset voltage is zero, and

(iii) there is zero gate current.

CHAPTER 3. LOW-POWER PROCESSORS 47

Typically, a companion gate produces the complementary output Out, which has the

important added benefit of keeping the loading of Vpulse constant and independent of the

state of the circuit. A constant
∑

allnodes Cload greatly simplifies the design of the resonant

LC power supply.

If R is the effective MOSFET channel resistance through which the capacitive load Cload

is charged, and T is the switching time or length of time that current flows to and from

Cload, then the power consumed in a reversible circuit is (Athas et al., 1994),

Preversible =
RCload

T
CloadV

2
ddf. (3.12)

When compared with Eq. 3.2 on page 35, it is apparent that adiabatic circuits can have

lower power than standard CMOS circuits if T is sufficiently long.

The major drawbacks of reversible circuits include: (i) low performance at efficient

operating points, (ii) a Vpulse circuit that is difficult to design because it must recycle

energy very efficiently, and (iii) a completely new circuit style that is not suited to all

circuit types. For example, a reversible memory is only theoretically possible. Further, it

appears reversible techniques are clearly advantageous only for circuits which slowly drive

large-capacitance loads. A 0.5 µm 12,700-transistor processor core using mostly-reversible

circuits has been reported (Athas et al., 1997). The processor is a remarkable achievement

but its power dissipation of 26 mW at 59 MHz is comparable to what could be expected

from a standard low-Vdd CMOS design.

3.3.6 Asynchronous Systems

An asynchronous system is one in which there are no clocks. Instead of using clocks for

synchronization, asynchronous designs use special handshaking signals between blocks to

coordinate the passing of data among them. The primary advantages of these systems are:

• Circuits are only active when there are data for them to process.

• Their speed is not limited by a global clock frequency that was selected to oper-

ate under worst-case conditions. Instead, the system can operate at the maximum

performance it is capable of, at whatever the current conditions are.

Asynchronous systems have not yet seen wide acceptance—largely because of their added

complexity and their incompatibility with current design methods and tools.

CHAPTER 3. LOW-POWER PROCESSORS 48

3.3.7 Software Design

Although gains are typically modest, power can sometimes be saved through careful selection

of instructions on a programmable processor. It is often possible to calculate a result in

more than one way. Since different instructions can consume different amounts of power

(particularly in a processor which shuts down unused functional units), it is likely that using

equivalent but lower-power instructions can reduce the overall energy required to perform

a job. Also, since the order in which instructions are executed affects node switching, the

ordering of instructions can also affect energy consumption.

A good example of a use of this technique is a “power-aware” compiler which optimizes

the code it produces considering power dissipation, as well as other standard factors such

as execution time and code size. Tiwari et al. (1994) achieved a 40% reduction in energy by

hand-tuning a block of code on a 486DX2 system. Their energy-efficiency accrued largely

through the reduction of reads and writes to memory through better register allocation. It

is important to note that the hand-tuning by Tiwari et al. also provided a 36% reduction

in the execution time, so it appears, as they state, that a compiler using their technique

does not produce code much different than a compiler tuned for maximum performance.

Other possible methods to reduce energy consumption mentioned by Tiwari et al. include the

reduction of pipeline stalls, cache misses, switching on address lines, and page misses in page-

mode DRAMs. But these approaches seem to be either no different from a high-performance

approach, or are likely to have little impact on total power. Another example cited is work

by Su et al. (1994) in which they reduce energy used in control circuits by modifying

instruction scheduling. Although Su claims a significant reduction in energy, Tiwari et al.’s

measurements yielded only a 2% maximum reduction in overall energy consumption using

Su’s technique.

Mehta et al. (1997) report a 4.25% average reduction in energy consumption on a simu-

lated DLX machine by reassigning registers to minimize toggling in the instruction register

and register file decoder, and on the instruction bus.

3.4 Summary

This chapter presents details of the four primary CMOS power-consumption classes: switch-

ing power, short-circuit power, leakage power, and constant-current power.

The second half of the chapter reviews techniques commonly used to reduce power

CHAPTER 3. LOW-POWER PROCESSORS 49

dissipation. Because switching power is proportional to the square of the supply voltage

for many circuits, reducing the supply voltage is one of the most often used and one of the

most effective methods to achieve reduced power dissipation. A number of techniques used

at the algorithmic, architectural, circuit, and technological levels are given.

Chapter 4

The Cached-FFT Algorithm

FFT algorithms typically are designed to minimize the number of multiplications and addi-

tions while maintaining a simple form. Few algorithms are designed to take advantage of

hierarchical memory systems, which are ubiquitous in modern processors. This chapter

presents a new algorithm, called the cached-FFT, which is designed explicitly to operate on

a processor with a hierarchical memory system. By taking advantage of a small cache mem-

ory, the algorithm enables higher operating clock frequencies (for special-purpose processor

applications) and reduced data communication energy.

FFT algorithms in the signal processing literature typically are described by butterfly

equations, a dataflow diagram, and sometimes through a specific implementation described

by pseudo-code. An algorithm which exploits a hierarchical memory system must also spec-

ify its memory access patterns, as the order of memory accesses strongly effects performance.

These patterns could be given with a pseudo-code example, but this would only show one

specific approach and does not contain the generality we desire. To describe the memory

access patterns of the cached-FFT, we derive (i) the cache addresses and WN exponents,

for butterfly execution, and (ii) the memory and cache addresses, for cache loading and

flushing. We present these addresses and exponent control signals independent of radix and

in such a way that memory access patterns can be rearranged while maintaining correct

operation and maximum reuse of data in the cache. Because the simple and regular struc-

tures of radix-r and in-place algorithms make their use attractive, particularly for hardware

implementations, the cached-FFT we present is also radix-r and in-place.

Although there are many ways to derive the cached-FFT, it is presented most easily by

beginning with a new and particularly regular FFT algorithm, which we call the RRI-FFT.

50

CHAPTER 4. THE CACHED-FFT ALGORITHM 51

Processor Cache Main Memory

Figure 4.1: Cached-FFT processor block diagram

We define, show the existence, and derive a general description of the RRI-FFT. We then

extend that description to derive a general description for the cached-FFT.

This chapter introduces new terms, characteristics, and implementation details of the

cached-FFT. To aid in its presentation, we assume that the cached-FFT algorithm operates

on a processor with a hierarchical memory structure.

4.1 Overview of the Cached-FFT

4.1.1 Basic Operation

The cached-FFT algorithm utilizes an architecture similar to the single-memory architecture

shown in Fig. 5.1, but with a small cache memory positioned between the processor and

main memory, as shown in Fig. 4.1. The C-word cache has significantly lower latency and

higher throughput than the main memory since normally, C
 N , where N is the length

of the FFT transform, and the main memory has at least N words.

The FFT caching algorithm operates with the following procedure:

1. Input data are loaded into an N -word main memory.

2. C of the N words are loaded into the cache.

3. As many butterflies as possible are computed using the data in the cache.

4. Processed data in the cache are flushed to main memory.

5. Steps 2–4 are repeated until all N words have been processed once.

6. Steps 2–5 are repeated until the FFT has been completed.

CHAPTER 4. THE CACHED-FFT ALGORITHM 52

4.1.2 Key Features

A distinguishing characteristic of the cached-FFT is that it isolates the main memory from

the high-speed portion of the processor. The algorithm allows repeated accesses of data

from a faster level of the memory hierarchy rather than a slower level. This characteristic

offers several advantages over methods which do not exploit the use of data caches, such as,

• increased speed—since smaller memories are faster than larger ones

• increased energy-efficiency—since smaller memories require lower energy per access

and can be positioned closer to the processor, than larger memories

The gains possible in performance and energy-efficiency through the use of the cached-FFT

increase as the transform length increases.

The algorithm also presents several disadvantages, including:

• the addition of new functional units (caches), if they are unavailable

• added controller complexity

4.1.3 Relevant Cached-FFT Definitions

To aid in the introduction of the cached-FFT algorithm, we define several new terms:

Definition: Epoch An epoch is the portion of the cached-FFT algorithm where all N

data words are loaded into a cache, processed, and written back to main memory once. �

Although the number of epochs, E, can equal one—that case is degenerate, and normally

E ≥ 2. Steps 2–5 in the list of Sec. 4.1.1 comprise an epoch.

Definition: Group A group is the portion of an epoch where a block of data is read

from main memory into a cache, processed, and written back to main memory. �

Steps 2–4 in the list of Sec. 4.1.1 comprise a group.

Definition: Pass A pass is the portion of a group where each word in the cache is read,

processed with a butterfly, and written back to the cache once. �

CHAPTER 4. THE CACHED-FFT ALGORITHM 53

Definition: Balanced cached-FFT A cached-FFT is balanced if there are an equal

number of passes in the groups from all epochs. �

Balanced cached-FFTs do not exist for all FFT lengths. The transform length of a bal-

anced cached-FFT is constrained to values of rEP , where r is the radix of the decomposition,

E is the number of epochs, and P is the number of passes per group.

4.2 FFT Algorithms Similar to the Cached-FFT

Gentleman and Sande (1966)

Gentleman and Sande propose an FFT algorithm that can make use of a “hierarchical store.”

The method they propose selects a transform length N that has two factors: N = AB. The

factor A is the “largest Fourier transform that can be done in the faster store.” A mixed-

radix decomposition is performed on the N -point DFT resulting in A-point transforms and

B-point transforms. Their decomposition can also be viewed as a single radix-A decimation

or a single radix-B decimation of the input sequence. This paper provides an example where

a 256K data set is read from tape, written to disk, transformed with A = 4096-point FFTs

in one pass, transformed with B = 64-point FFTs in a second pass, then written back to

disk and tape.

Singleton (1967)

Singleton’s approach is perhaps of limited use for modern processors because of its intended

application which used “serial-organized memory files, such as magnetic tapes or serial disk

files.” Nearly all semiconductor memories are random access and the serial-access restriction

is a significant, unnecessary limitation. The algorithm is also optimized to use a particularly

small amount of fast memory, and requires a full log2 N passes through the whole data set.

However, it does read correct-order input and write correct-order output (as opposed to

bit-reversed input or output).

Brenner (1969)

Brenner proposes two algorithms in his paper. One is better suited for cases where the

length of the transform is not much longer than the size of the fast memory, and the second

is better suited for cases where the transform length is much longer. Although he assumes

CHAPTER 4. THE CACHED-FFT ALGORITHM 54

both memories are random-access, both algorithms require multiple transpositions of data

in memory, which adds significantly to the execution time of a modern processor.

Rabiner and Gold (1975)

Rabiner and Gold discuss a method they call “FFT computation using fast scratch memory.”

They propose using a small fast memory of size
√

N to reduce the number of “major

memory” accesses. A single DIF dataflow diagram for N = 16 is given which uses an unusual

not-in-place structure. Unfortunately, they give neither a derivation method nor references.

Through private communication with both authors (Rabiner, 1997; Gold, 1997), however, it

was learned that although neither author is certain of the origins of the algorithm, Rabiner

believes it came from one of the many FFT conferences in the 1960s, and is not clearly

attributable to any one individual.

Gannon (1987)

Gannon’s method, which is similar to Gentleman and Sande’s approach, reformulates the

DFT equation, Eq. 2.5, using a mixed-radix decomposition with 2α-point and 2n−α-point

transforms. His method can be viewed as a single radix-2α or radix-2n−α decimation of the

input sequence. Gannon designed his algorithm to execute on an Alliant FX/8 multi-vector

computer. The re-structured FFT allows the eight vector processors to more effectively use

the available memory bandwidth through the use of a shared multi-ported cache.

Blocking through compiler optimizations

Blocking is a general optimization technique used by compilers to increase the temporal

locality in a computer program (Hennessy and Patterson, 1996). A program which exhibits

high temporal locality frequently references a small number of addresses, and therefore

suffers few cache misses. Rather than accessing data in an array by rows or by columns, a

“blocked” algorithm repeatedly accesses data in a submatrix or block (Lam et al., 1991).

Keeping data references within a block reduces the size of the working set, and thereby

improves the cache’s effectiveness.

Since a compiler generates nearly all code used by general-purpose processors, FFTs

executing on those processors may perform better if they are blocked by an optimizing

compiler. However, blocking compilers only attempt to minimize the expectation of the

CHAPTER 4. THE CACHED-FFT ALGORITHM 55

cache miss rate. An FFT algorithm that has been optimized for a hierarchical memory, on

the other hand, will likely have higher performance.

Although designers frequently use compilers to generate some code for programmable

DSP processors, compiled code often performs poorly and critical sections of code are

normally written by hand (Bier, 1997). For special-purpose FFT processors, hardware

state machines or a small number of very-high-level instructions control the processor and

thus, code generation is non-existent or trivial, and compilers are not used.

Bailey (1990)

Bailey proposes a “four-step FFT algorithm” for length-N transforms where N = n1n2.

Again similar to Gentleman and Sande’s approach, the method uses a mixed-radix de-

composition with n1-point and n2-point transforms. The method is equivalent to a single

radix-n1 or radix-n2 decimation of the input sequence. The following four steps are per-

formed on the n1 × n2 input data array:

1. n1 n2-point FFTs are calculated.

2. The resulting data are multiplied by twiddle factors.

3. The matrix is transposed.

4. n2 n1-point FFTs are calculated.

Bailey uses the four-step algorithm to reduce the number of accesses to data in “external

memory” on Cray-2, Cray X-MP, and Cray Y-MP supercomputers.

Carlson (1991)

The processors of Cray-2 supercomputers have access to 16,000-word local memories in

addition to a 268-million-word common memory. Carlson proposes a method using local

memories to hold FFT “subproblems,” which increases performance by increasing the total

memory bandwidth (i.e., bandwidth to local and common memories). Subproblems con-

sisting of only four or eight words realize the best performance because of features peculiar

to the Cray-2 architecture.

CHAPTER 4. THE CACHED-FFT ALGORITHM 56

Smit and Huisken (1995)

Smit and Huisken propose using 32 and 64-word memories in the design of a 2048-point

FFT processor. Unfortunately, they give no details or references regarding the algorithm.

Stevens et al. (1998)

Stevens et al. (1998) and Hunt et al. (1998) propose a mixed-radix FFT decomposition using

N1-point and N2-point transforms, where N = N1N2. They estimate the energy dissipation

of their proposed 1024-point asynchronous FFT processor to be 18 µJ per transform. In

their comparison with other processors, they unfortunately cite Spiffee1’s energy dissipation

at a supply voltage of 3.3 V as 50 µJ, when it is actually 25 µJ. Although not noted in their

papers, Spiffee1’s measured energy dissipation at a supply voltage of 1.1 V is 3.1 µJ per

transform.

4.3 General FFT Terms

Some of the terms discussed in this section were used loosely in Ch. 2. They are now

described more completely.

Radix-r FFT algorithms. A few key characteristics of radix-r, FFTs are that they:

• Use only radix-r butterflies, which have r inputs and r outputs

• Have logr N stages (see stage definition below)

• Contain N/r butterflies per stage

Definition: Stage A stage is the part of an FFT where all N memory locations are

read, processed by a butterfly, and written back once. �

In an FFT dataflow diagram, a stage corresponds to a column of butterflies. Figure 4.2

is a representative dataflow diagram which shows the six stages (0–5) of a 64-point radix-

2 FFT. Additionally, the 64 memory locations are indicated along the vertical axis. By

convention, memory locations are numbered with 0 at the top and N − 1 at the bottom.

Definition: In-place A butterfly is in-place if its inputs and outputs use the same

memory locations. An in-place FFT uses only in-place butterflies. �

CHAPTER 4. THE CACHED-FFT ALGORITHM 57

stage0 stage1 stage2 stage3 stage4 stage5

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60
 63

Figure 4.2: FFT dataflow diagram with labeled stages

Definition: Stride The stride of a butterfly is the distance (measured in memory

locations) between adjacent “legs” or “spokes” of a butterfly. �

The stride is also the increment between memory addresses if memory words are accessed

in increasing order. As an example, Fig. 4.3 shows a radix-2 butterfly with one leg reading

memory location k and the adjacent leg (the only other one in this case) reading location

k + 4. The stride is then (k + 4)− k = 4. Similarly, Fig. 4.4 shows a radix-4 butterfly with

a stride of one between its input and output legs.

Definition: Span The span of a butterfly is the maximum distance (measured in mem-

ory locations) between any two butterfly legs. �

Using the two previous examples, the span of the butterfly in Fig. 4.3 is four and the

span of the butterfly in Fig. 4.4 is three. For a radix-r butterfly with constant stride between

all adjacent legs pairs, the span can also be found by,

span = (r − 1)stride. (4.1)

CHAPTER 4. THE CACHED-FFT ALGORITHM 58

k + 4

k + 3

k + 2

k + 1

k

stride = 4

Figure 4.3: Radix-2 butterfly with stride = 4

k + 3

k + 2

k + 1

k

stride = 1

stride = 1

stride = 1

Figure 4.4: Radix-4 butterfly with stride = 1

CHAPTER 4. THE CACHED-FFT ALGORITHM 59

4.4 The RRI-FFT Algorithm

Definition: RRI-FFT The RRI-FFT (Regular, Radix-r, In-place FFT) algorithm is a

radix-r in-place FFT with the following additional characteristics:

• The stride of all legs of a butterfly (input and output) are equal.

• The stride of all butterflies in a stage are equal.

• The stride of butterflies monotonically increases or decreases by a factor of r as the

stage number varies from 0 to logr(N) − 1.
�

4.4.1 Existence of the RRI-FFT

Theorem 1 It is always possible to draw an RRI-FFT dataflow diagram where the stride

of butterflies increases by a factor r through succeeding stages.

Proof From the RRI-FFT definition, we assume a radix-r, in-place decomposition using

butterflies with constant stride. Extending the FFT derivation given in Sec. 2.4, common-

factor FFTs can be developed through the following procedure:

1. Decimate a 1-dimensional M -point data sequence by r, which results in a 2-dimensional

(M/r) × r array

2. Perform DFTs of the columns (or rows)

3. Possibly multiply the intermediate data by twiddle factors

4. Perform DFTs of the rows (or columns)

The calculation of the DFT of a row (or column) longer than r members normally involves

the recursive treatment of that sequence. Figure 4.5 shows a common way of performing

the decimation by r for a sequence of length N . The sequence is decimated such that the

index of x(n) increases by one in one dimension (vertical in this case), and increases by r

in the other dimension. Radix-r butterflies calculate the column-wise DFTs. The row-wise

DFTs are, in general, longer than r and therefore require further decimations.

During the decimation of the sequences, a single sequence is folded into r sequences that

are 1/r the length of the previous sequence. The final decimation ends with an r × r array

where radix-r butterflies calculate DFTs of both columns and rows.

CHAPTER 4. THE CACHED-FFT ALGORITHM 60

x(0)

x(1)

x(r − 1)

x(r)

x(r + 1)

x(2r − 1)

x(2r)

x(2r + 1)

x(3r − 1)

x(N − r)

x(N − r + 1)

x(N − 1)

Figure 4.5: Decimation of an N -point sequence into an (N/r) × r array

In general then, the first decimation produces columns with index spacings of one, which

are calculated by a radix-r butterfly with a stride of one. Assuming a large N , the second

decimation is performed on each of the r rows and results in r separate (N/r2) × r arrays

where the columns now have strides of r. The third decimation produces r2 arrays where the

columns have strides of r2. Therefore, the kth decimation (k = 1, 2, . . .) produces columns

with strides of rk−1 and the final decimation (out of logr(N) − 1 total) has columns with

strides of rlogr N−1−1 = rlogr N/r2 = N/r2 and rows with strides of N/r.

Therefore, since the stride of each column after the kth decimation (k−1th stage) is rk−1

and the final decimation produces columns with a stride of N/r2 and rows with a stride

of N/r, a dataflow diagram can be drawn with the stride of its butterflies increasing by a

factor r from stage to stage. QED

Table 4.1 summarizes the strides of butterflies at different stages, as described in the

previous proof.

CHAPTER 4. THE CACHED-FFT ALGORITHM 61

Stage 0 1 2 . . . logr(N) − 2 logr(N) − 1

Stride 1 r r2 . . . N/r2 N/r

Table 4.1: Strides of butterflies across logr N stages

Example 1 N=16, radix-2 FFT

We now illustrate Theorem 1’s proof using N = 16 and a radix-2 decomposition. To simplify

the illustration, twiddle factor multiplications are omitted.

Figure 4.6 shows the original data sequence with its 16 elements. First, the sequence

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15)

Figure 4.6: 16×1 x(n) input sequence array

is re-organized (or decimated) into an 8 × 2 array as shown in Fig. 4.7. Since the data

shown in this and subsequent diagrams are no longer elements of the input sequence x, but

x̂(0)

x̂(1)

x̂(2)

x̂(3)

x̂(4)

x̂(5)

x̂(6)

x̂(7)

x̂(8)

x̂(9)

x̂(10)

x̂(11)

x̂(12)

x̂(13)

x̂(14)

x̂(15)

Figure 4.7: 8×2 x̂(n) intermediate data array

rather are intermediate results, they are written as x̂. Element numbers of x̂ correspond

to the element numbers of x which occupied corresponding memory locations. DFTs are

performed on the columns using radix-2 butterflies with a stride of one. The input/output

locations of butterflies are indicated in the figures with heavy lines. Next, the 8-element

rows are decimated into 4× 2 arrays. The results of only the first row of Fig. 4.7 are shown

CHAPTER 4. THE CACHED-FFT ALGORITHM 62

x̂(0)

x̂(2)

x̂(4)

x̂(6)

x̂(8)

x̂(10)

x̂(12)

x̂(14)

Figure 4.8: 4×2 x̂(n) intermediate data array

in Fig. 4.8. Again, the DFTs of the columns are calculated with radix-2 butterflies, but

this time with a stride of two. The third decimation results in 2 × 2 arrays. The results of

the decimation of only the first row of the data in Fig. 4.8 are shown in Fig. 4.9. The FFT

x̂(0)

x̂(4)

x̂(8)

x̂(12)

Figure 4.9: 2×2 x̂(n) intermediate data array

can now be completed with radix-2 butterflies of the columns and rows. The stride of the

columns is four and the stride of the rows is eight.

The strides of increasing butterfly stages throughout the FFT are thus: 1, 2, 4, 8; which

increase by a factor r = 2. �

Example 2 N = 27, radix-3 FFT

A second example uses N = 27 = 3× 3× 3 and a radix-3 decomposition. Figure 4.10 shows

the results of the first decimation of the 27-element input sequence x. The stride of the

radix-3 column butterflies is one. The 9-element rows are then decimated by r = 3 as shown

in Fig. 4.11. The stride of the resulting columns is three and the stride of the final rows is

nine. In summary, the strides of subsequent butterfly stages throughout the FFT are: 1, 3,

9; which increase by a factor r = 3. �

CHAPTER 4. THE CACHED-FFT ALGORITHM 63

x̂(0)

x̂(1)

x̂(2)

x̂(3)

x̂(4)

x̂(5)

x̂(6)

x̂(7)

x̂(8)

x̂(9)

x̂(10)

x̂(11)

x̂(12)

x̂(13)

x̂(14)

x̂(15)

x̂(16)

x̂(17)

x̂(18)

x̂(19)

x̂(20)

x̂(21)

x̂(22)

x̂(23)

x̂(24)

x̂(25)

x̂(26)

Figure 4.10: 9×3 x̂(n) intermediate data array

x̂(0)

x̂(3)

x̂(6)

x̂(9)

x̂(12)

x̂(15)

x̂(18)

x̂(21)

x̂(24)

Figure 4.11: 3×3 x̂(n) intermediate data array

CHAPTER 4. THE CACHED-FFT ALGORITHM 64

Corollary An RRI-FFT dataflow diagram can also be drawn with its stride decreasing by

r through succeeding stages (given without proof).

4.5 Existence of the Cached-FFT

Theorem 2 All butterflies in an RRI-FFT (except those in the last stage), share at most

one output with the inputs of any single butterfly in the subsequent stage.

Proof If the stride of butterflies in stage s is strides, then, from Theorem 1, the stride

of butterflies in stage s + 1 is strides+1 = strides · r. From Eq. 4.1, butterflies in stage

s have a span of (r − 1)strides. Since the span of the s-stage butterflies is less than the

stride of the s + 1-stage butterflies, it is impossible for a butterfly in stage s + 1 to share

an input/output with more than one leg of a butterfly in stage s. QED

Figure 4.12 shows the positioning of these two butterflies with respect to each other.

span = (r − 1)strides

strides

strides+1 = r · strides

stage s stage s + 1

.

.

.
.
.
.

.

.

.
.
.
.

Figure 4.12: Stride and span of arbitrary-radix butterflies

Example 3 N = 27, radix-3 FFT

To illustrate Theorem 2, Fig. 4.13 shows two radix-3 butterflies in adjacent stages where a

span of two in stage s and a stride of three in stage s + 1 clearly prevent more than one

output/input from coinciding. �

CHAPTER 4. THE CACHED-FFT ALGORITHM 65

span = 2
stride = 3

stage s stage s + 1

Figure 4.13: Stride and span of radix-3 butterflies

Corollary All butterflies in an RRI-FFT (except those in the last stage), share each of

their r outputs with one input of r different butterflies in the subsequent stage (given without

proof).

Theorem 3 In c contiguous stages of an RRI-FFT, it is always possible to find rc−1 but-

terflies per stage (c · rc−1 butterflies total) that can be calculated using rc memory locations.

Proof Assuming s and s + 1 are valid stage numbers of an RRI-FFT, from Theorem 2,

each butterfly in stage s + 1 shares an input with r separate butterflies in stage s. These

r butterflies in stage s are located every spans + strides words as shown in Fig. 4.14. The

kth inputs or outputs of these butterflies are then also spaced every spans + strides words.

Because spans + strides is equal to strides+1, a single butterfly in stage s + 1 exists which

shares its inputs with the kth outputs of the r butterflies in stage s. Therefore, there exist r

butterflies in stage s + 1 whose r · r inputs match all r · r outputs of r butterflies in stage s.

It has been shown that over two stages, r butterflies per stage can be calculated using

r2 memory locations. Assuming s + 2 is a valid stage number, the process can be repeated

recursively for butterflies in stage s + 2, which results in the calculation of r2 butterflies

using r3 memory locations over three stages.

As each additional stage adds a factor of r butterflies and a factor of r memory locations,

by induction, it is possible to calculate rc−1 butterflies using rc memory locations over c

stages. QED

CHAPTER 4. THE CACHED-FFT ALGORITHM 66

spans

strides

spans + strides

strides+1

stage s stage s + 1

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Figure 4.14: Extended diagram of the stride and span of arbitrary-radix butterflies

4.6 A General Description of the RRI-FFT

Descriptions of FFT algorithms in the literature typically consist of a dataflow diagram for

a specific case, and a simple software program. This section provides a general description

of the RRI-FFT which more readily provides insight into the algorithm and extensions to

it.

We begin by closely examining the memory access pattern of the RRI-FFT dataflow

diagram, shown in Fig. 4.2 on page 57, and recognizing that butterflies are clustered into

“groups.” For example, in stage 2, butterflies are clustered into eight “groups” of four but-

terflies each. Because of the unique clustering of butterflies into groups, a concise description

of the memory accesses makes use of two counters:

• a group counter—which counts groups of butterflies

• a butterfly counter—which counts butterflies within a group

Table 4.2 contains a generalized listing of the number of groups per stage and the number

of butterflies per group, as well as the number of digits required for each counter. The

rightmost column contains the sum of the group counter bits and the butterfly counter bits

and is constant across all stages. The constant sum is clearly necessary since both counters

CHAPTER 4. THE CACHED-FFT ALGORITHM 67

Stage Groups Digits in Butterflies Digits in Total

number per group per butterfly counter

stage counter group counter bits

0 N/r logr(N) − 1 1 0 logr(N) − 1

1 N/r2 logr(N) − 2 r 1 logr(N) − 1

2 N/r3 logr(N) − 3 r2 2 logr(N) − 1

...
...

...
...

...
...

logr(N) − 2 r 1 N/r2 logr(N) − 2 logr(N) − 1

logr(N) − 1 1 0 N/r logr(N) − 1 logr(N) − 1

Table 4.2: Butterfly counter and group counter information describing the memory access
pattern for an N -point, radix-r, DIT RRI-FFT

together address a single butterfly within a stage, and the number of butterflies per stage

is constant (N/r).

To fully describe the RRI-FFT, it is necessary to specify the memory access patterns

and the values of the WN butterfly coefficients. Table 4.3 shows the values of digits in the

group and butterfly counters which are needed to generate memory addresses. The asterisks

represent digit positions where different values in that position address the r inputs and r

outputs of the butterflies. For example, in the radix-2 case, a “0” in place of the asterisk

addresses the A input and X output of the butterfly, and a “1” in the asterisk’s position

addresses the B input and Y output. In the rightmost column of the table, bk digits generate

exponents for the WN coefficients.

Note that the table does not specify a particular order in which to calculate the FFT.

The subscripts of the counter digits g and b show only the relationship between address

digits and WN -generating digits. The digits can be incremented in any order or pattern—

the only requirement is that all N/r butterflies are calculated once and only once. As shown

in Sec. 4.7, the development of the cached-FFT relies on this property. Of course, the order

of calculation is not entirely arbitrary, as a butterfly’s inputs must be calculated before it

can calculate its outputs.

Although the radix-2 approach is easiest to visualize, the description given by the tables

applies to algorithms with other radices as well. For use with radices other than two, the

CHAPTER 4. THE CACHED-FFT ALGORITHM 68

D
ig

it
s

in
D

ig
it

s
in

S
ta

ge
gr

o
u
p

bu
tt
er

fl
y

B
u
tt

er
fl
y

ad
d
re

ss
es

W
N

n
u
m

b
er

co
u
n
te

r
co

u
n
te

r
(
x

=
o
n
e

d
ig

it
)

ex
p
o
n
en

ts

0
lo

g
r
(N

)
−

1
0

g l
o
g

r
(N

)−
2

g l
o
g

r
(N

)−
3

..
.

g 2
g 1

g 0
∗

00
0
··
·0

0

1
lo

g
r
(N

)
−

2
1

g l
o
g

r
(N

)−
3

g l
o
g

r
(N

)−
4

..
.

g 1
g 0

∗
b 0

b 0
00

··
·0

0

2
lo

g
r
(N

)
−

3
2

g l
o
g

r
(N

)−
4

g l
o
g

r
(N

)−
5

..
.

g 0
∗

b 1
b 0

b 1
b 0

0
··
·0

0

. . .
. . .

. . .
. . .

. . .

lo
g

r
(N

)
−

2
1

lo
g

r
(N

)
−

2
g 0

∗
b l

o
g

r
(N

)−
3

..
.

b 2
b 1

b 0
b l

o
g

r
(N

)−
3
b l

o
g

r
(N

)−
4
··
·b

0
0

lo
g

r
(N

)
−

1
0

lo
g

r
(N

)
−

1
∗

b l
o
g

r
(N

)−
2

b l
o
g

r
(N

)−
3

..
.

b 2
b 1

b 0
b l

o
g

r
(N

)−
2
b l

o
g

r
(N

)−
3
··
·b

1
b 0

T
a
b
le

4
.3

:
A

d
d
re

ss
es

an
d

b
as

e
W

N
ex

p
on

en
ts

fo
r

an
N

-p
o
in

t,
ra

d
ix

-r
,
D

IT
R

R
I-

F
F
T

.
T

h
e

va
ri

ab
le

s
g k

an
d

b k
re

p
re

se
n
t

th
e

k
th

d
ig

it
s

o
f
th

e
gr

o
u
p

an
d

bu
tt
er

fl
y

co
u
n
te

rs
re

sp
ec

ti
v
el

y.
A

st
er

is
k
s

(∗
)

re
p
re

se
n
t

d
ig

it
p
os

it
io

n
s

w
h
er

e
th

e
r

p
os

si
b
le

va
lu

es
a
d
d
re

ss
th

e
r

b
u
tt

er
fl
y

in
p
u
ts

an
d

r
ou

tp
u
ts

.

CHAPTER 4. THE CACHED-FFT ALGORITHM 69

counter digits (e.g., g1, ∗, b0,. . .) are interpreted as base-r digits instead of binary digits

(∈ [0, 1]) as in the radix-2 case. Higher-radix algorithms generally require more than one

WN coefficient, so although Table 4.3 gives only one WN , it serves as a base factor where

other coefficients are normally multiples of the given value.

Example 4 N = 64 Radix-2 RRI-FFT

Table 4.4 details the generation of butterfly addresses and WN coefficients for a 64-point,

radix-2, DIT RRI-FFT. Because r = 2, there are log2 64 = 6 stages. Since the example uses

a radix-2 decomposition, all counter places are binary digits. �

Stage Butterfly address digits WN butterfly

number (x = one digit) coefficients

stage 0 g4 g3 g2 g1 g0 ∗ W 00000
64

stage 1 g3 g2 g1 g0 ∗ b0 W b00000
64

stage 2 g2 g1 g0 ∗ b1 b0 W b1b0000
64

stage 3 g1 g0 ∗ b2 b1 b0 W b2b1b000
64

stage 4 g0 ∗ b3 b2 b1 b0 W b3b2b1b00
64

stage 5 ∗ b4 b3 b2 b1 b0 W b4b3b2b1b0
64

Table 4.4: Addresses and WN coefficients for a 64-point, radix-2, DIT FFT

4.7 A General Description of the Cached-FFT

As previously mentioned, the derivation of the cached-FFT is greatly simplified by viewing

the cached-FFT as a modified RRI-FFT. To further simplify the development, we initially

consider only balanced cached-FFTs. Section 4.7.2 addresses the handling of unbalanced

cached-FFTs. Further, we consider only DIT decompositions, and note that the develop-

ment of DIF variations begins with a DIF form of the RRI-FFT and is essentially identical.

First, a review of two key points regarding the counter digits in Table 4.3: (i) the sum

of the number of digits in the group and butterfly counters is constant, and (ii) the counter

CHAPTER 4. THE CACHED-FFT ALGORITHM 70

digits can be incremented in any order, as long as every butterfly is executed once and only

once.

The goal is to find a grouping of the memory accesses such that a portion of the full FFT

can be calculated using fewer than N words of memory. Table 4.5 shows one re-labeling

of the counter digits that achieves this goal. Fixing the number of bits in the group and

butterfly counters, and keeping the positions of the group counter digits fixed across an

epoch allows a subset of the FFT to be calculated in rlogr(C) = C memory locations.

To increase readability, Table 4.6 repeats the information in Table 4.5 but removes

redundant labeling of the group counter positions.

Another key point of departure of the cached-FFT from the RRI-FFT is the renaming

of the RRI-FFT’s stages, which are now identified by an epoch number and a pass number.

The renaming reinforces the following features of the cached-FFT:

• Across any epoch, the positions and values of the group counter digits are constant.

• Within each epoch, the memory address pattern is identical for the logr(C)−1 address

digits not connected to the group counter. These digits are the logr(C) − 2 butterfly

digits plus the one “∗” digit.

The WN coefficients are generated using the same method that the RRI-FFT uses,

except that the new group and butterfly mappings are used. Table 4.7 shows how WN

exponents are formed.

Example 5 N = 64, E = 2, Radix-2 Cached-FFT

To illustrate how the cached-FFT works, we now consider a cached-FFT implementation of

the N = 64, radix-2, DIT FFT considered in Example 4. We choose two epochs (E = 2) for

this cached-FFT example. Following the format of information for the RRI-FFT given in

Table 4.4, Table 4.8 provides the address digit positions and WN coefficients for a 64-point

cached-FFT.

Two epochs of three passes each replace the six stages of the RRI-FFT. The three group

counter digits (g2, g1, g0) are fixed across both epochs. The butterfly counter and asterisk

digit (b1, b0, ∗) positions are the same in both epochs. These characteristics enable the

algorithm to be used efficiently on a processor with a cache memory.

One step in adapting the algorithm to a hierarchical memory structure is the separation

of the data transactions between main memory and the cache, and transactions between the

CHAPTER 4. THE CACHED-FFT ALGORITHM 71

E
p
o
ch

P
as

s
B

u
tt

er
fl
y

A
d
d
re

ss
es

n
u
m

b
er

n
u
m

b
er

(
x

=
on

e
d
ig

it
)

0
0

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗

1
g l

o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

b l
o
g

r
(C

)−
2

..
.

b 1
∗

b 0

. . .
. . .

. . .
. . .

lo
g

r
(N

)/
E

−
1

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

∗
..

.
b 2

b 1
b 0

1
0

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
g l

o
g

r
(C

)−
1

..
.

g 1
g 0

1
g l

o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

b l
o
g

r
(C

)−
2

..
.

b 1
∗

b 0
g l

o
g

r
(C

)−
1

..
.

g 1
g 0

. . .
. . .

. . .
. . .

lo
g

r
(N

)/
E

−
1

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

∗
..

.
b 2

b 1
b 0

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

. . .
. . .

. . .
. . .

. . .
. . .

E
−

1
0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
··
·

g 2
·
lo

g
r
(C

)−
1

..
.

g l
o
g

r
C

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0
··
·

g 2
·
lo

g
r
(C

)−
1

..
.

g l
o
g

r
C

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

. . .
. . .

. . .
. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

··
·

g 2
·
lo

g
r
(C

)−
1

..
.

g l
o
g

r
C

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

T
a
b
le

4
.5

:
M

em
or

y
ad

d
re

ss
es

fo
r

an
N

-p
o
in

t,
b
a
la

n
ce

d
,
ra

d
ix

-r
,
D

IT
ca

ch
ed

-F
F
T

.
T

h
e

va
ri

ab
le

s
g k

an
d

b k
re

p
re

se
n
t

th
e

k
th

d
ig

it
s

o
f
th

e
gr

o
u
p

a
n
d

bu
tt
er

fl
y

co
u
n
te

rs
re

sp
ec

ti
v
el

y.
A

st
er

is
k
s

(∗
)

re
p
re

se
n
t

d
ig

it
p
os

it
io

n
s

w
h
er

e
th

e
r

p
os

si
b
le

va
lu

es
ad

d
re

ss
th

e
r

b
u
tt

er
fl
y

in
p
u
ts

an
d

r
ou

tp
u
ts

.

CHAPTER 4. THE CACHED-FFT ALGORITHM 72

E
p
o
ch

P
as

s
B

u
tt

er
fl
y

A
d
d
re

ss
es

n
u
m

b
er

n
u
m

b
er

(
x

=
on

e
d
ig

it
)

0
0

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0

. . .
. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

1
0

g l
o
g

r
(N

/
C

)−
1

..
.

g l
o
g

r
(N

/
C

)−
lo

g
r
(C

)
··
·

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
g l

o
g

r
(C

)−
1

..
.

g 1
g 0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0

. . .
. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

. . .
. . .

. . .
. . .

. . .
. . .

E
−

1
0

b l
o
g

r
(C

)−
2

..
.

b 1
b 0

∗
··
·

g 2
·
lo

g
r
(C

)−
1

..
.

g l
o
g

r
C

g l
o
g

r
(C

)−
1

..
.

g 1
g 0

1
b l

o
g

r
(C

)−
2

..
.

b 1
∗

b 0

. . .
. . .

lo
g

r
(N

)/
E

−
1

∗
..

.
b 2

b 1
b 0

T
a
b
le

4
.6

:
A

si
m

p
li
fi
ed

v
ie

w
of

th
e

m
em

or
y

ad
d
re

ss
es

sh
ow

n
in

T
ab

le
4.

5
th

at
is

p
os

si
b
le

b
ec

au
se

th
e

p
os

it
io

n
s

of
d
ig

it
s

in
th

e
gr

o
u
p

co
u
n
te

r
a
re

co
n
st

an
t

a
cr

os
s

ep
o
ch

s.

CHAPTER 4. THE CACHED-FFT ALGORITHM 73

Epoch Pass

number number WN exponents

0 0 000 · · · 000

1 b000 · · · 000

2 b1b00 · · · 000

...
...

logr(N)/E − 1 blogr(C)−2 · · · b1b00 · · · 00

1 0 glogr(C)−1 · · · g1g00 · · · 00

1 b0glogr(C)−1 · · · g1g00 · · · 00

2 b1b0glogr(C)−1 · · · g1g00 · · · 00

...
...

logr(N)/E − 1 blogr(C)−2 · · · b1b0glogr(C)−1 · · · g1g00 · · · 00

...
...

...

E − 1 0 glogr(N/C)−1 · · · g1g00 · · · 00

1 b0glogr(N/C)−1 · · · g1g00 · · · 00

2 b1b0glogr(N/C)−1 · · · g1g00 · · · 00

...
...

logr(N)/E − 1 blogr(C)−2 · · · b1b0glogr(N/C)−1 · · · g1g0

Table 4.7: Base WN coefficients for an N -point, balanced, radix-r, DIT cached-FFT. The
variables gk and bk represent the kth digits of the group and butterfly counters respectively.

CHAPTER 4. THE CACHED-FFT ALGORITHM 74

Epoch Pass Butterfly address digits WN butterfly

number number (x = one digit) coefficients

0 0 g2 g1 g0 b1 b0 ∗ W 00000
64

1 g2 g1 g0 b1 ∗ b0 W b00000
64

2 g2 g1 g0 ∗ b1 b0 W b1b0000
64

1 0 b1 b0 ∗ g2 g1 g0 W g2g1g000
64

1 b1 ∗ b0 g2 g1 g0 W b0g2g1g00
64

2 ∗ b1 b0 g2 g1 g0 W b1b0g2g1g0

64

Table 4.8: Addresses and WN coefficients for a 64-point, radix-2, DIT, 2-epoch cached-FFT

Epoch Memory address digits Cache address digits

number (x = one digit) (x = one digit)

0 g2 g1 g0 ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ g2 g1 g0 ∗ ∗ ∗

Table 4.9: Main memory and cache addresses used to load and flush the cache—for a
64-point, radix-2, DIT, 2-epoch cached-FFT

cache and the processor. Table 4.9 shows how the group counter digits generate memory

addresses for the r3 = 23 = 8 words that are accessed each time the caches are loaded or

flushed.

Another step is the generation of cache addresses used to access data for butterfly

execution. Table 4.10 shows the cache addresses generated by the butterfly counter digits.

Again, cache addresses are the same across both epochs. Table 4.10 also shows the counter

digits used to generate WN coefficients. The rightmost column of the table shows how WN

values are calculated using both group and butterfly digits.

Figure 4.15 shows the flow graph of the 64-point cached-FFT. Radix-2 butterflies are

CHAPTER 4. THE CACHED-FFT ALGORITHM 75

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 63

epoch 0 epoch 1

pass 0pass 0 pass 1pass 1 pass 2pass 2

group 0

group 1

group 2

Figure 4.15: Cached-FFT dataflow diagram

CHAPTER 4. THE CACHED-FFT ALGORITHM 76

Epoch Pass Cache address digits WN butterfly

number number (x = one digit) coefficients

0 0 b1 b0 ∗ W 00000
64

1 b1 ∗ b0 W b00000
64

2 ∗ b1 b0 W b1b0000
64

1 0 b1 b0 ∗ W g2g1g000
64

1 b1 ∗ b0 W b0g2g1g00
64

2 ∗ b1 b0 W b1b0g2g1g0

64

Table 4.10: Cache addresses and WN coefficients for a 64-point, radix-2, DIT, 2-epoch
cached-FFT

drawn with heavier lines, and transactions between main memory and the cache—which

involve no computation—are drawn with lighter-weight lines. A box encloses an 8-word

group to show which butterflies are calculated together from the cache. �

4.7.1 Implementing the Cached-FFT

As with any FFT transform, the length (N) and radix (r) must be specified. The cached-

FFT also requires the selection of the number of epochs (E).

Although the computed variables presented below are derived from N, r, and E—and

are therefore unnecessary—we introduce new variables to clarify the implementation of the

algorithm.

Calculating the number of passes per group

For a balanced cached-FFT, the number of passes per group can be found by,

NumPassesPerGroup = logr(N)/E. (4.2)

CHAPTER 4. THE CACHED-FFT ALGORITHM 77

For unbalanced cached-FFTs, the number of passes per group varies across epochs, so there

is no single global value. Though the sum of the number of passes per group over all epochs

must still equal logr N , the passes are not uniformly allocated across epochs.

Calculating the cache size, C

From Eq. 4.2 and Theorem 3, the cache size, C, is,

C = r

“
logr N

E

”
(4.3)

C =
[
r(logr N)

]1/E
(4.4)

C = N1/E (4.5)

C =
E
√

N. (4.6)

For an unbalanced cached-FFT, the cache memory must accommodate the largest num-

ber of passes in an epoch, which (excluding pathological cases) is �logr(N)/E�. Again using

Theorem 3, the cache size, C, is calculated by,

C = r

l
logr N

E

m
. (4.7)

Other variables

For balanced cached-FFTs,

NumGroupsPerEpoch = N/C (4.8)

NumButterfliesPerPass = C/r. (4.9)

Cases with fixed cache sizes

In some cases, the cache size and the transform length are fixed, and the number of epochs

must be determined. Since the cache size is not necessarily a power of r, a maximum of

�logr C� passes can be calculated from data in the cache. To attain maximum reusability

of data in the cache, the minimum number of epochs is desired. As the number of epochs

must be an integer, the expression for E is then,

E =

⌈
logr N

�logr C�
⌉

. (4.10)

CHAPTER 4. THE CACHED-FFT ALGORITHM 78

Pseudo-code algorithm flow

for e = 0 to E-1

for g = 0 to NumGroupsPerEpoch-1

Load_Cache(e,g);

for p = 0 to NumPassesPerGroup-1

for b = 0 to NumButterfliesPerPass-1

[X,Y,...] = butterfly[A,B,...];

end

end

Dump_Cache(e,g);

end

end

Load_Cache(e,g)

for i = 0 to C-1

CACHE[AddrCache] = MEM[AddrMem];

end

Dump_Cache(e,g)

for i = 0 to C-1

MEM[AddrMem] = CACHE[AddrCache];

end

4.7.2 Unbalanced Cached-FFTs

Unbalanced cached-FFTs do not have a constant number of passes in the groups of each

epoch. The quantity E
√

N is also not an integer (excluding pathological cases).

We develop unbalanced cached-FFTs by first constructing a cached-FFT algorithm for

the next longer transform length (N ′) where E
√

N ′ is an integer. For radix-r cached-FFTs,

N ′ = N · rk, where k is a small integer. After the length-N ′ transform has been designed,

the appropriate k rows of the address-generation table are removed and the epoch and pass

numbers are reassigned. Which k rows are removed depends on how the cached-FFT was

formulated. However, in all cases, the k additional rows which must be removed to make

an N -point transform from the N ′-point transform are unique. The remaining passes can

be placed into any epoch and the resulting transform is not unique.

CHAPTER 4. THE CACHED-FFT ALGORITHM 79

The main disadvantage of unbalanced cached-FFTs is that they introduce additional

controller complexity.

4.7.3 Reduction of Memory Traffic

By holding frequently-used data, the data cache reduces traffic to main memory several

fold. Without a cache, data are read from and written to main memory logr N times. With

a cache, data are read and written to main memory only E times. Therefore, the reduction

is memory traffic is,

Memory traffic reduction multiple = logr(N)/E. (4.11)

This reduction in memory traffic enables more processors to work from a unified main mem-

ory and/or the use of a slower lower-power main memory. In either case, power dissipated

accessing data can be decreased since a smaller memory that may be located nearer to the

datapath stores the data words.

4.7.4 Calculating Multiple Transform Lengths

It is sometimes desirable to calculate transforms of different lengths using a processor with a

fixed cache size. The procedure is simplified by first formulating the cached-FFT algorithm

for the longest desired transform length, and then shortening the length to realize shorter

transforms. Since it is possible to calculate r transforms of length N/r by simply omitting

one radix-r decimation from the formulation of the FFT, we can calculate multiple shorter-

length transforms by removing a stage from an FFT computation. For a cached-FFT,

removing a stage corresponds to the removal of a pass, which involves changing the number

of passes per group and/or the number of epochs. Depending on the particular case and

the number of passes that are removed, the resulting transform may be unbalanced.

Since the amount of time spent by the processor executing from the cache decreases

as the number of passes per group decreases, the processor may stall due to main memory

bandwidth limitations for short-length transforms. However, in all cases, throughput should

never decrease.

CHAPTER 4. THE CACHED-FFT ALGORITHM 80

4.7.5 Variations of the Cached-FFT

Although the description of the cached-FFT given in this section is sufficient to generate

a wide variety of cached-FFT algorithms, additional variations are possible. While not

described in detail, a brief overview of a few possible variations follows.

Many variations to the cached-FFT are possible by varying the placement of data words

in main memory and the cache. Partitioning the main memory and/or cache into multiple

banks will increase memory bandwidth and alter the memory address mappings.

Although FFT algorithms scramble either the input or output data into bit-reversed

order, it is normally desirable to work only with normal-order data. The cached-FFT

algorithm offers additional flexibility in sorting data into normal order compared to a non-

cached algorithm. Depending on the particular design, it may be possible to overlap input

and output operations in normal order with little or no additional buffer memories.

Another class of variations to the cached-FFT is used in applications which contain more

than two levels of memory. For these cases, multiple levels of cached-FFTs are constructed

where a group from one cached-FFT is calculated by a full cached-FFT in a higher-level

of the memory hierarchy (i.e., a smaller, faster memory). However, the whole problem

is more clearly envisioned by constructing a multi-level cached-FFT where, in addition to

normal groupings, memory address digits are simply formed into smaller groups which fit

into higher memory hierarchies.

4.7.6 Comments on Cache Design

For systems specifically designed to calculate cached-FFTs, the full complexity of a general-

purpose cache is unnecessary. The FFT is a fully deterministic algorithm and the flow

of execution is data-independent. Therefore, cache tags and associated tag circuitry are

unnecessary.

Furthermore, since memory addresses are known a priori, pre-fetching data from mem-

ory into the cache enables higher processor utilization.

4.8 Software Implementations

Although implemented in a dedicated FFT processor in this dissertation, the cached-FFT

algorithm can also be implemented in software form on programmable processors.

CHAPTER 4. THE CACHED-FFT ALGORITHM 81

The algorithm is more likely to be of value for processors which have a memory hierarchy

where higher levels of memory are faster and/or lower power than lower levels, and where

the highest-level memory is smaller than the whole data set.

Example 6 Programmable DSP processor

The Mitsubishi D30V DSP processor (Holmann, 1996) utilizes a Very Long Instruction

Word (VLIW) architecture and is able to issue up to two instructions per cycle. Examples

of single instructions include: multiply-accumulate, addition, subtraction, complex-word

load, and complex-word store. Sixty-three registers can store data, pointers, counters, and

other local variables.

The calculation of a complex radix-2 butterfly requires seven instructions, which are

spent as follows:

1 cycle: Update memory address pointers

1 cycle: Load A and B into registers

4 cycles: Four Breal ,imag · Wreal ,imag multiplications, two A + BW additions, and two

A − BW subtractions

1 cycle: Store X and Y back to memory

The processor calculates 256-point IFFTs while performing MPEG-2 decoding. The

core butterfly calculations of a 256-point FFT require 7 · 256/2 · log2 256 = 7168 cycles.

If a cached-FFT algorithm is used with two epochs (E = 2), from Eq. 4.6, the size of

the cache is then C = E
√

N = 2
√

256 = 16 complex words—which requires 32 registers. The

register file caches data words from memory.

From Eq. 4.2, there are logr(N)/E = log2(256)/2 = 4 passes per group. The first pass

of each group does not require stores, the middle two passes do not need loads or stores,

and the final pass does not require loads. The first and last passes of each group require one

instruction to update a memory pointer. Pointer-update instructions can be grouped among

pairs of butterflies and considered to consume 0.5 cycles each. The total number of cycles

required is then (5.5+4+4+5.5) · 256/2 · 2 = 4864 cycles, which is a 1− 4864/7168 = 32%

reduction in computation time, or a 1.47× speedup! �

CHAPTER 4. THE CACHED-FFT ALGORITHM 82

4.9 Summary

This chapter introduces the cached-FFT algorithm and describes a procedure for its imple-

mentation.

The cached-FFT is designed to operate with a hierarchical memory system where a

smaller, higher-level memory supports faster accesses than the larger, lower-level memory.

New terms to describe the cached-FFT are given, including: epoch, group, and pass.

The development of the cached-FFT is based on a particularly regular FFT which we

develop and call the RRI-FFT. Using the RRI-FFT as a starting point, it is shown that

in c contiguous stages of an FFT, it is possible to calculate rc−1 butterflies per stage using

only rc memory locations. This relationship is the basis of the cached-FFT.

Chapter 5

An Energy-Efficient, Single-Chip

FFT Processor

Spiffee1 is a single-chip, 1024-point, fast Fourier transform processor designed for low-power

and high-performance operation.

This chapter begins with a number of key characteristics and goals of the processor, to

establish a framework in which to consider design decisions. The remainder and bulk of the

chapter presents details of the algorithmic, architectural, and physical designs of Spiffee.

Where helpful, we also present design alternatives considered.

5.1 Key Characteristics and Goals

1024-point FFT

The processor calculates a 1024-point fast Fourier transform.

Complex data

In general, both input and output data have real and imaginary components.

1The name Spiffee is loosely derived from Stanford low-power, high-performance, FFT engine.

83

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 84

Simple data format

In order to simplify the design, data are represented in a fixed-point notation. Internal

datapaths maintain precision with widths varying from 20 to 24 bits.

Emphasis on energy-efficiency

For systems which calculate a parallelizable algorithm, such as the FFT, an opportunity

exists to operate with both high energy-efficiency and high performance through the use

of parallel, energy-efficient, processors (see Parallelizing and pipelining, page 38). Thus, in

this work, we place a larger emphasis on increasing the processor’s energy-efficiency than

on increasing its execution speed. To be more precise, our merit function is proportional to

energyx × timey with x > y.

Low-Vt and high-Vt CMOS

Spiffee is designed to operate using either (i) low and tunable-threshold CMOS transistors

(see ULP CMOS, page 43), or (ii) standard high-Vt transistors.

Robust operation with low supply voltages

When fabricated in ULP-CMOS, the processor is expected to operate at a supply voltage

of 400 mV. Because the level of circuit noise under these conditions is not known, circuits

and layout are designed to operate robustly in a noisy low-Vdd environment.

Single-chip

All components and testing circuitry fit on a single die.

Simple testing

Chip testing becomes much more difficult as chip I/O speeds increase beyond a few tens of

MHz, due to board-design difficulties and chip tester costs which mushroom in the range of

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 85

50–125 MHz. Because a very low cost and easy to use tester2 was readily available, Spiffee

was designed so that no high-speed I/O signals are necessary to test the chip, even while

running at full speed.

5.2 Algorithmic Design

5.2.1 Radix Selection

As stated in Sec. 1.1, simplicity and regularity are important factors in the design of a

VLSI processor. Although higher-radix, prime-factor, and other FFT algorithms are shown

in Sec. 2.4 to require fewer operations than radix-2, a radix-2 decomposition was nevertheless

chosen for Spiffee with the expectation that the simpler form would result in a faster and

more energy-efficient chip.

5.2.2 DIT vs. DIF

The two main types of radix-2 FFTs are the Decimation In Time (DIT) and Decimation In

Frequency (DIF) varieties (Sec. 2.4.1). Both calculate two butterfly outputs, X and Y , from

two butterfly inputs, A and B, and a complex coefficient W . The DIT approach calculates

the outputs using the equations: X = A + BW and Y = A−BW , while the DIF approach

calculates its outputs using: X = A + B and Y = (A − B)W . Because the DIT form is

slightly more regular, it was chosen for Spiffee.

5.2.3 FFT Algorithm

Spiffee uses the cached-FFT algorithm presented in Ch. 4 because the algorithm supports

both high-performance and low-power objectives, and it is well suited for VLSI implemen-

tations.

In order to simplify the design of the chip controller, only those numbers of epochs, E,

which give balanced configurations with N = 1024 were considered. Since 3
√

1024 ≈ 10.1

2The QDT (Quick and Dirty Tester) is controlled through the serial port of a computer and operates at
a maximum speed of 500 vectors per second. It was originally designed by Dan Weinlader. Jim Burnham
made improvements and laid out its PC board. An Irsim-compatible interface was written by the author.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 86

and 4
√

1024 ≈ 5.7 are not integers, and because E ≥ 5 results in much smaller and less

effective cache sizes, the processor was designed with two epochs. With E = 2, each word

in main memory is read and written twice per transform. From Eq. 4.6, the cache size C is

then,

C =
E
√

N (5.1)

=
2
√

1024 (5.2)

= 32 words. (5.3)

Although this design easily supports multiple processors, Spiffee contains a single proces-

sor/cache pair and a single set of main memory. Using Eq. 4.11, the cached-FFT algorithm

reduces traffic to main memory by several times:

Memory traffic reduction multiple = logr(N)/E (5.4)

= log2(1024)/2 (5.5)

= 5. (5.6)

The five-fold reduction in memory traffic permits the use of a much slower and lower-power

main memory.

From Eqs. 4.2, 4.8, and 4.9 on page 76, Spiffee then has 32 groups per epoch, 5 passes

per group, and 16 butterflies per pass.

5.2.4 Programmable vs. Dedicated Controller

There are two primary types of processor controllers: programmable controllers which ex-

ecute instructions dynamically, and dedicated controllers whose behavior is inherent in the

hardware design, and thus fixed. While the flexibility of a programmable processor is cer-

tainly desirable, its complexity is several times larger than that of a non-programmable

processor. To keep Spiffee’s complexity at a level that can be managed by one person, it

uses a dedicated controller.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 87

5.3 Architectural Design

5.3.1 Memory System Architecture

This section presents several memory system architectures used in FFT processors followed

by a description of the one chosen for Spiffee. All example processors can calculate 1024-

point complex FFTs.

Single-memory

The simplest memory system architecture is the single-memory architecture, in which a

memory of at least N words connects to a processor by a bi-directional data bus. In

general, data are read from and written back to the memory once for each of the logr N

stages of the FFT.

Processor Main Memory

Figure 5.1: Single-memory architecture block diagram

Dual-memory

Processors using a dual-memory architecture connect to two memories of size N using sep-

arate busses. Input data begin in one memory and “ping-pong” through the processor from

memory to memory logr N times until the transform has been calculated. The Honeywell

DASP processor (Magar et al., 1988), and the Sharp LH9124 processor (Sharp Electronics

Corporation, 1992) use the dual-memory architecture.

Processor Main MemoryMain Memory

Figure 5.2: Dual-memory architecture block diagram

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 88

Pipeline

For processors using a pipeline architecture, a series of memories, which generally range in

size from O(N) to a few words, replace N -word memories. Either physically or logically,

there are logr N stages. Figure 5.3 shows the flow of data through the pipeline structure

and the interleaving of processors and buffer memories. Typically, an O(r)-word memory is

on one end of the pipeline, and memory sizes increase by r through subsequent stages, with

the final memory of size O(N). The LSI L64280 FFT processor (Ruetz and Cai, 1990; LSI

Logic Corporation, 1990a; LSI Logic Corporation, 1990b; LSI Logic Corporation, 1990c)

and the FFT processor designed by He and Torkelson (1998) use pipeline architectures.

ProcessorProcessorProcessor BufferBufferBuffer . . .

Figure 5.3: Pipeline architecture block diagram

Array

Processors using an array architecture comprise a number of independent processing ele-

ments with local buffers, interconnected through some type of network. The Cobra FFT

processor (Sunada et al., 1994) uses an array architecture and is composed of multiple chips

which each contain one processor and one local buffer. The Plessey PDSP16510A FFT

Processor

ProcessorProcessor

Processor

Buffer

BufferBuffer

Buffer

+

++

+

. . .

. . .

...
...

Figure 5.4: Array architecture block diagram

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 89

processor (GEC Plessey Semiconductors, 1993; O’Brien et al., 1989) uses an array-style

architecture with four datapaths and four memory banks on a single chip.

Cached-memory

The cached-memory architecture is similar to the single-memory architecture except that a

small cache memory resides between the processor and main memory, as shown in Fig. 5.5.

Spiffee uses the cached-memory architecture since a hierarchical memory system is necessary

to realize the full benefits of the cached-FFT algorithm.

Processor Cache Main Memory

Figure 5.5: Cached-FFT processor block diagram

Performance of the memory system can be enhanced, as Fig. 5.6 illustrates, by adding

a second cache set. In this configuration, the processor operates out of one cache set while

the other set is being flushed and then loaded from memory. If the cache flush time plus

load time is less than the time required to process data in the cache, which is easy to

accomplish, then the processor need not wait for the cache between groups. The second

cache set increases processor utilization and therefore overall performance, at the expense

of some additional area and complexity.

Processor

Cache

Cache

Main Memory

Figure 5.6: Block diagram of cached-memory architecture with two cache sets

Performance of the memory system shown in Fig. 5.6 can be further enhanced by par-

titioning each of the cache’s two sets (0 and 1) into two banks (A and B), as shown in

Fig. 5.7.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 90

Proc

Cache

Cache

Cache

Cache

Main Memory

0A

0B

1A

1B

Figure 5.7: Block diagram of cached-memory architecture with two cache sets of two banks
each

The double-banked arrangement increases throughput as it allows an increased number

of cache accesses per cycle. Spiffee uses this double-set, double-bank architecture.

5.3.2 Pipeline Design

Because the state of an FFT processor is independent of datum values, a deeply-pipelined

FFT processor is much less sensitive to pipeline hazards than is a deeply-pipelined general-

purpose processor. Since clock speeds—and therefore throughput—can be dramatically

increased with deeper pipelines that do not often stall, Spiffee has an aggressive cache→
processor→cache pipeline. The cache→memory and memory→cache pipelines have some-

what-relaxed timings because the cached-FFT algorithm puts very light demands on the

maximum cache flushing and loading latencies.

Datapath pipeline

Spiffee’s nine-stage cache→processor→cache datapath pipeline is shown in Fig. 5.8. In the

first pipeline stage, the input operands A and B are read from the appropriate cache set

and W is read from memory. In pipeline stage two, operands are routed through two 2× 2

MEM CROSSB MULT1 MULT2 MULT3 ADD/SUB
CMULT

ADD/SUB
XY

CROSSB MEM
READ WRITE

A
B
W

B x W
X = A+BW

Y = A-BW

X

Y

Figure 5.8: Spiffee’s nine-stage datapath pipeline diagram

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 91

crossbars to the correct functional units. Four B{real,imag} × W{real,imag} multiplications

of the real and imaginary components of B and W are calculated in stages three through

five. Stage six completes the complex multiplication by subtracting the real product Bimag×
Wimag from Breal×Wreal and adding the imaginary products Breal×Wimag and Bimag×Wreal .

Stage seven performs the remaining additions or subtractions to calculate X and Y , and

pipeline stages eight and nine complete the routing and write-back of the results to the

cache.

Pipeline hazards

While deep pipelines offer high peak performance, any of several types of pipeline conflicts,

or “hazards” (Hennessy and Patterson, 1996) normally limit their throughput. Spiffee’s

pipeline experiences a read-after-write data hazard once per group, which is once every 80

cycles. The hazard is handled by stalling the pipeline for one cycle to allow a previous

write to complete before executing a read of the same word. This hazard also could have

been handled by bypassing the cache and routing a copy of the result directly to pipeline

stage two—negating the need to stall the pipeline—but this would necessitate the addition

of another bus and another wide multiplexer into the datapath.

Cache←→memory pipelines

As Eq. 5.4 shows, the cached-FFT algorithm significantly reduces the required movement

of data to and from the main memory. The main memory arrays are accessed in two cycles

in order to make the design of the main memory much easier and to reduce the power they

consume. In the case of memory writes, only one cycle is required because it is unnecessary

to precharge the bitlines or use the sense amplifiers.

Figure 5.9 shows the cache→memory pipeline diagram. A cache is read in the first stage,

the data are driven onto the memory bus through a 2 × 2 crossbar in stage two, and data

are written to main memory in stage three.

Cache
Read

Drive
Bus

Memory
Write

Figure 5.9: Cache→memory pipeline diagram

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 92

Cache
Write

Memory
Read1

Drive
Bus

Memory
Read2

Precharge Access

Figure 5.10: Memory→cache pipeline diagram

The memory→cache pipeline diagram is shown in Fig. 5.10. In the first stage, the

selected memory array is activated, bitlines and sense amplifiers are precharged, and the

array address is predecoded. In the second pipeline stage, the wordline is asserted; and the

data are read, amplified, and latched. In stages three and four, data are driven onto the

memory bus, go through a crossbar, and are written to the cache.

5.3.3 Datapath Design

In this section, “full” and “partial” blocks are discussed. By “full” we mean the block is

“fully parallel,” or able to calculate one result per clock cycle, even though the latency may

be more than one cycle. By “partial” we mean the complement of full, implying that at

least some part of the block is iterative, and thus, new results are not available every cycle.

A “block” can be a functional unit (e.g., an adder or multiplier), or a larger compu-

tational unit such as a complete datapath (e.g., an FFT butterfly). A partial functional

unit contains iteration within the functional unit, and so data must flow through the same

circuits several times before completion. A partial datapath contains iteration at the func-

tional unit level, and so a single functional unit is used more than once for each calculation

the computational unit performs.

A full non-iterative radix-2 datapath has approximately the right area and performance

for a single-chip processor using 0.7 µm technology. Spiffee’s datapath calculates one com-

plex radix-2 DIT butterfly per cycle. This fully-parallel non-iterative butterfly processor

has high hardware utilization—100% not including system-wide stalls.

Some alternatives considered for the datapath design include:

• A higher-radix “full” datapath—unfortunately, this is too large to fit onto a single die

• Higher-radix “partial” datapaths (e.g., one multiplier, one adder,. . .)

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 93

• Higher-radix datapath with “partial” functional units (e.g., radix-4 with multiple

small iterative multipliers and adders)

• Multiple “partial” radix-2 butterfly datapaths—in this style, multiple self-contained

units calculate butterflies without communicating with other butterfly units. Iteration

can be performed either at the datapath level or at the functional unit level.

The primary reasons a “full” radix-2 datapath was chosen are because of its efficiency, ease

of design, and because it does not require any local control, that is, control circuits other

than the global controller.

5.3.4 Required Functional Units

The functional units required for the Spiffee FFT processor include:

Main memory — an N -word × 36-bit memory for data

Cache memories — 32-word × 40-bit caches

Multipliers — 20-bit × 20-bit multipliers

WN generation/storage — coefficients generated or stored in memories

Adders/subtracters — 24-bit adders and subtracters

Controller — chip controller

Clock — clock generation and distribution circuits

5.3.5 Chip-Level Block Diagram

Once the required functional units are selected, they can be arranged into a block diagram

showing the chip’s floorplan, as shown in Fig. 5.11. Figure 6.1 on page 129 shows the

corresponding die microphotograph of Spiffee1.

5.3.6 Fixed-Point Data Word Format

Spiffee uses a signed 2’s-complement notation that varies in length from 18+18 bits to

24+24 bits. Table 5.1 gives more details of the format. Sign bits are indicated with an “S”

and general data bits with an “X.”

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 94

Chip
Controller

16 x 40-bit
Cache

Clock

20-bit Multiplier

24-bit Sub

256 x 40-bit ROM

8 bank x 128 x 36-bit
SRAM

I/O Interface

16 x 40-bit
Cache

16 x 40-bit
Cache

16 x 40-bit
Cache

20-bit Multiplier

20-bit Multiplier

20-bit Multiplier

24-bit Add

24-bit Sub

24-bit Add

24-bit Sub

24-bit Add

256 x 40-bit ROM

Note: For clarity, not
 all buses shown.

= Crossbar
 or Mux

Figure 5.11: Chip block diagram

Format Binary Decimal

General format SXXXXXXXXXXXXXXXXXXX

Minimum value 10000000000000000000 −1.0

Maximum value 01111111111111111111 +0.9999981

Minimum step size 00000000000000000001 +0.0000019

Table 5.1: Spiffee’s 20-bit, 2’s-complement, fixed-point, binary format

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 95

5.4 Physical Design

This section provides some details of the main blocks listed in the previous section. Circuit

schematics presented adhere to the following rules-of-thumb to increase readability: two

wires which come together in a “�” are electrically connected, but wires which cross (“+”)

are unconnected, unless a “•” is drawn at the intersection. Also, several die micropho-

tographs of Spiffee1 are shown.

5.4.1 Main Memory

This section discusses various design decisions and details of the 1024-word main memory,

including an introduction of the hierarchical bitline memory architecture, which is especially

well suited for low-Vdd , low-Vt operation.

SRAM vs. DRAM

The two primary types of RAM are static RAM (SRAM) and dynamic RAM (DRAM).

DRAM is roughly four times denser than SRAM but requires occasional refreshing, due to

charge leakage from cell storage capacitors. For a typical CMOS process, refresh times are

on the order of a millisecond. This could have worked well for an FFT processor since data

are processed on the order of a tenth of a millisecond—so periodic refreshing due to leakage

would not have been necessary. However, DRAMs also need refreshing after data are read

since memory contents normally are destroyed during a read operation. But here again, use

in an FFT processor could have worked well because initial and intermediate data values

are read and used only once by a butterfly and then written over by the butterfly’s outputs.

So while the use of DRAM for the main memory of a low-power FFT processor initially

appears attractive, DRAM was not used for Spiffee’s main memory because in a low-Vt

process, cell leakage (Ioff) is orders of magnitude greater than in a standard CMOS process—

shortening refresh times inverse-proportionately. Refresh times for low-Vt DRAM could

easily be on the order of a fraction of a microsecond, making their use difficult and unreliable.

The other significant reason is that use of DRAM would complicate testing and analysis of

the chip, as well as making potential problems in the memory itself much more difficult to

debug.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 96

Circuit design

Although it is possible to build many different styles of SRAM cells, common six-transistor

or 6T cells (Weste and Eshraghian, 1985) operate robustly even with low-Vt transistors.

Four-transistor cells require a non-standard fabrication process, and cells with more than

six transistors were not considered because of their larger size.

Since memories contain so many transistors, it is difficult to implement a large low-power

memory using a low-Vt process because of large leakage currents. Design becomes even more

difficult if a “standby” mode is required—where activity halts and leakage currents must

typically be reduced.

Although several lower-Vdd , lower-Vt SRAM designs have been published, nearly all make

use of on-chip charge pumps to provide voltages larger than the supply voltage. These larger

voltages are used to reduce leakage currents and decrease memory access times through a

variety of circuit techniques. Also, these chips typically use a process with multiple Vt

values. Yamauchi et al. (1996; 1997) present an SRAM design for operation at 100 MHz

and a supply voltage of 0.5V using a technology with 0.5V and 0V thresholds. The design

requires two additional voltage supplies at 1.3 V and 0.8 V. The current drawn from these

two additional supplies is low and so the voltages can be generated easily by on-chip charge

pumps. Yamauchi et al. present a comparison of their design with two other low-power

SRAM approaches. They make one comparison with an approach proposed by Mizuno et al.

(1996), who propose using standard Vt transistors, Vdd < 1.0 V, and a negative source-line

voltage in the vicinity of −0.5 V. Yamauchi et al. state the source-line potential must be

−0.75 V with Vdd = 0.5 V, and note that the charge pump would be large and inefficient

at those voltage and current levels. They make a second comparison with a design by Itoh

et al. (1996). Itoh et al. propose an approach using two boosted supplies which realizes a

Vdd = 300mV, 50MHz, SRAM implemented in a 0.25µm, Vt-nmos = 0.6V, Vt-pmos = −0.3V

technology. At a supply voltage of Vdd = 500 mV, these additional boosted voltages are in

the range of 1.4 V and −0.9 V. Amrutur and Horowitz (1998) report a 0.35 µm, low-Vdd

SRAM which operates at 150 MHz at Vdd = 1.0 V, 7.2 MHz at Vdd = 0.5 V, and 0.98 MHz

at Vdd = 0.4 V.

To avoid the complexity and inefficiency of charge-pumps, Spiffee’s memory is truly low-

Vdd and operates from a single power supply. In retrospect, however, it appears likely that

generating local higher supply voltages would have resulted in a more overall energy-efficient

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 97

Sense
Amp

wordline
on

0

1

1

1

Ileakage

Ileakage

Ileakage

Ion

Figure 5.12: Circuit showing SRAM bitline fan-in leakage

design. In any case, constructing additional supplies involves a design-time/efficiency trade-

off that clearly requires substantially more design effort.

Bitline leakage

Memory reads performed under low-Vdd , low-Vt conditions can fail because of current leak-

age on the high fan-in bitlines. Figure 5.12 illustrates the problem. The worst case for a

memory with L rows occurs when all L cells in a column—except one—store one value, and

one cell (the bottom one in this schematic) stores the opposite value. For 6T SRAMs, the

value of a cell is sensed by the cell sinking current into the side storing a “0”; very little

current flows out of the side storing a “1.” To first order, if leakage through the L−1 access

transistors on one bitline ((L − 1) · Ileakage) is larger than the Ion current of the accessed

cell on the other bitline, a read failure will result.

Figure 5.13 shows a spice simulation of this scenario with a 128-word SRAM operating

at a supply voltage of 300 mV. In this simulation, the access transistors of 127 cells are

leaking, pulling bitline toward Gnd . The cell being read is pulling bitline toward Gnd .

The simulation begins with a precharge phase (6 ns < time < 13 ns) which boosts both

bitline and bitline toward Vdd . The leakage on bitline causes it to immediately begin

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 98

prechg_

wordline

bitline_

bitline

Figure 5.13: Spice simulation of a read failure with a 128-word, low-Vt, non-hierarchical-
bitline SRAM operating at Vdd = 300 mV

sloping downward as prechg rises and turns off. As the wordline rises (time ≈ 14 ns), the

selected RAM cell pulls bitline toward Gnd . Bitline holds a constant voltage after wordline

drops (time > 20 ns). Leakage continues to drop the voltage of bitline regardless of the

wordline’s state. Since the “0” on bitline is never lower than the “1” on bitline , an incorrect

value is read.

The most common solution to this problem is to reduce the leakage onto the bitlines

using one of two methods. The first approach is to overdrive the access transistor gates by

driving the wordline below Gnd when the cell is unselected (for NMOS access transistors).

Another method is to reduce the Vds of the access transistors by allowing the voltage of

the access transistors’ sources to rise near the average bitline potential, and then pull the

sources low when the row is accessed, in order to increase cell drive current.

Hierarchical bitlines

Our solution to the bitline-leakage problem is through the use of a hierarchical-bitline archi-

tecture, as shown in Fig. 5.14. In this scheme, a column of cells is partitioned into segments

by cutting the bitlines at uniform spacings. These short bitlines are called local bitlines (lbl

and lbl in the figure). A second pair of bitlines called global bitlines (gbl and gbl in the

figure) is run over the entire column and connected to the local bitlines through connecting

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 99

M1M1

M2 M2

M3 M3

nwell

prechg

keeper

gbl gbl

lbl lbl

lbl sel

lbl sel

wordline

prechg saprechg sa

Vbp sa

out

Figure 5.14: Schematic of a hierarchical-bitline SRAM

transistors. Accesses are performed by activating the correct wordline as in a standard

approach, as well as connecting its corresponding local bitline to the global bitline.

If an L-word memory is partitioned into S segments, the worst-case bitline leakage will

be on the order of, but less than, (L/S−1)Ileakage from the leakage of cells in the connected

local bitline, plus 2(S−1)Ileakage from leakage through the S−1 unconnected local bitlines.

For non-degenerate cases (e.g., S = 1, S ≈ L, L ≈ 1), this leakage is clearly less than

when using an approach with a single pair of bitlines, which leaks (L − 1) · Ileakage. Values

of S near
√

L work best because a memory with S =
√

L has S memory cells attached

to each local bitline and S local bitlines connected to each global bitline. Under those

circumstances, access transistors contribute the same amount of capacitance to both local

and global bitlines, and the overall capacitance is minimized, to first order.

Figure 5.15 shows a spice simulation of the same memory whose simulation results are

shown in Fig 5.13—but with hierarchical bitlines. The same precharge and wordline circuits

are used as in the previous case. Here, the 127 cells are leaking onto the gbl bitline (most,

however, are leaking onto disconnected local bitlines), and the accessed cell is pulling down

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 100

prechg_

wordline

gbl

gbl_

Figure 5.15: Spice simulation of a successful read with a 128-word, low-Vt, hierarchical-
bitline SRAM operating at Vdd = 300 mV

gbl. The downward slope of gbl from leakage begins at the end of the precharge stage,

but is clearly less than in the non-hierarchical case. For these two simulations, gbl of the

hierarchical-bitline memory leaks approximately 1 mV/ns while bitline of the standard

memory leaks approximately 8 mV/ns. When the wordline accesses the cell, gbl drops well

below gbl and the sense amplifier reads the correct value.

The primary drawbacks of the hierarchical-bitline approach are the extra complexity

involved in decoding and controlling the local bitline select signals; and the area penalty

associated with local-bitline-select circuits, bitline-connection circuits, and two pairs of

bitlines. Using MOSIS design rules, however, the cell width is not limited by the lbl, lbl , gbl,

and gbl pitch (which are laid out using the metal2 layer), so the use of hierarchical bitlines

does not increase the cell size. The series resistance of bitline-connection transistors slows

access times, although a reduction of overall bitline capacitance by nearly 50% provides

a significant speedup in the wordline→bitline access time. Longer precharge times may

degrade performance further, although it is easy to imagine schemes where the precharge

time could be shortened considerably (such as by putting precharge transistors on each local

bitline).

To control bitline leakage—which is especially important while the clock is run at very

low frequencies, such as during testing—a programmable control signal enables weak keeper

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 101

transistors (labeled M2 in Fig. 5.14). Keepers are commonly used in dynamic circuits to

retain voltage levels in the presence of noise, leakage, or other factors which may corrupt

data. For Spiffee, two independently-controllable parallel transistors are used, with one

weaker than the other.

Sense amplifiers

Figure 5.14 shows the design of the sense amplifiers. They are similar to ones proposed by

Bakoglu (1990, page 153), but are fully static. They possess the robust characteristic of

being able to correct their outputs if noise (or some other unexpected source) causes the

sense amplifier to begin latching the wrong value. Popularly-used sense amplifiers with back-

to-back inverters do not have this property. Of course, a substantial performance penalty is

incurred if the clock is slowed to allow the sense amplifiers to correct their states—but the

memory would at least function under those circumstances. Because the bitlines swing over

a larger voltage range than typical sense amplifier input-offset voltages (Itoh et al., 1995),

the sense amplifiers operate correctly at low supply voltages.

The gates of a pair of PMOS transistors serve as inputs to the sense amplifiers (M3 in

Fig. 5.14). Because the chip is targeted for n-well or triple-well processes, the bodies of the

PMOS devices can be isolated in their own n-well. By biasing this n-well differently from

other n-wells, robust operation is maintained while improving the bitline→sense-amplifier-

out time by up to 45%. For this reason, the n-well for the M3 PMOS is biased separately

from other n-wells.

Phases of operation

The operation of Spiffee’s memory arrays can be divided into three phases. Some circuits

are used only for reads, some only for writes, and some for both. Memory writes are simpler

than reads since they do not use precharge or sense amplifier circuits.

Precharge phase — During the precharge phase, the appropriate local bitlines are con-

nected to the global bitlines. Transistors M1 charge gbl and gbl to Vdd when prechg

goes low. Wordline-selecting address bits are decoded and prepared to assert the

correct wordline. When performing a read operation, internal nodes of the sense

amplifiers are precharged to Gnd by the signal prechg sa going high.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 102

Access phase — In the access phase, a wordline’s voltage is raised, which connects a row

of memory cells to their local bitlines. For read operations, the side of the memory cell

which contains a “0” reduces the voltage of the corresponding local bitline, and thus,

the corresponding global bitline as well. For write operations, large drivers assert

data onto the global bitlines. Write operations are primarily performed by the bitline

which is driven to Gnd , since the value stored in a cell is changed by the side of the

cell that is driven to Gnd . Write operations which do not change the stored value are

much less interesting cases since the outcome is the same whether or not the operation

completes successfully.

Sense phase — For read operations, when the selected cells have reduced the voltage of

one global bitline in each global bitline pair to Vdd − Vt-pmos , the corresponding M3

transistor begins to conduct and raise the voltage of its drain. When that internal

node rises Vt-nmos above Gnd , the NMOS transistor whose gate is tied to that node

clamps (holds) the internal node on the other side of the sense amplifier to Gnd .

As the rising internal node crosses the switching threshold of the static inverter, the

signal out toggles and the read is completed. The output data are then sent to the

bus interface circuitry, which drives the data onto the memory bus.

Memory array specifics

To increase the efficiency of memory transactions, Spiffee’s memory arrays have the same 36-

bit width as memory data words. Previous memory designs commonly use column decoders

which select several bits out of an accessed word, since the memory array stores words

several times wider than the data-word width. Unselected bits are unused, which wastes

energy.

When determining the number of words in a memory array, it is important to consider

the area overhead of circuits which are constant per array—such as sense amplifiers and

bus interface circuits. For example, whether a memory array contains 64, 128, or 256 words

makes no difference in the absolute area of the sense amplifiers and bus interface circuits

for the array. Spiffee’s memory arrays contain 128 words because that size gives good area

efficiency, and because arrays with 128-words fit well on the die.

Spiffee’s main memory comprises eight 128-word by 36-bit SRAM arrays. Seven address

bits are used to address the 128 words. Each column has eight segments or local bitlines

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 103

6T SRAM cell array

Address predecoders

Memory array
Block decoders

Bitline

Local bitlineGlobal bitline

keepers

S
en

se
 a

m
pl

ifi
er

s

controller

B
us

 in
te

rf
ac

e

Figure 5.16: Microphotograph of a 128-word × 36-bit SRAM array

(S = 8). Figure 5.16 shows a microphotograph of an SRAM array. The eight local bitlines

are clearly seen and dashed lines indicate the lengths of local and global bitlines. Block

decoders decode the upper three bits of the seven-bit address to select the correct local

bitline. The memory array controller generates all timing and control signals for the array.

Bus interface circuitry buffers data to and from the memory bus. Address predecoders

partially decode the four least-significant address bits and drive this information along the

bottom side of the array to the wordline drivers. Programmable bitline keepers control

bitline leakage and are highlighted on the far left side of the array. For Spiffee, the area

penalty of the hierarchical-bitline architecture is approximately 6%.

Figure 5.17 shows a closeup view of the region around one row of bitline-connection

transistors. Both global and local bitlines are routed in the second layer of metal. A box

around a pair of SRAM cells indicates the area they occupy.

5.4.2 Caches

Single-ported vs. dual-ported

To sustain the throughput of the pipeline diagram shown in Fig. 5.8, cache reads of A and

B and cache writes of X and Y must be performed every cycle. Assuming two independent

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 104

Local Bitline_

Local Bitline
Global Bitline

Global Bitline_

2 SRAM cells

Figure 5.17: Microphotograph of an SRAM cell array

cache arrays are used, one read and one write must be made each cycle. Multiple memory

transactions per cycle are normally accomplished in one of two ways. One approach is to

perform one access (normally the write) during the first half of the cycle, and then the other

access (the read) during the second half of the cycle. A second method is to construct the

memory with two ports that can simultaneously access the memory.

The main advantage of the single-ported, split-cycle approach is that the memory is

usually smaller since it has a single read/write port. Making two sequential accesses per

cycle may not require much additional effort if the memory is not too large.

The dual-ported approach, on the other hand, results in larger cells that require both

read and write capability—which implies dual wordlines per cell and essentially duplicate

read and write circuits. The key advantage of the dual-ported approach is that twice as

much time is available to complete the accesses. Fewer special timing signals are required,

and circuits are generally simpler and more robust. For these reasons, Spiffee’s caches use

the dual-ported approach with one read-only port and one write-only port. A simultaneous

read and write of the memory should normally be avoided. Depending on the circuits

used, the read may return either the old value, the new value, or an indeterminate value.

When used as an FFT cache, the simultaneous read/write situation is avoided by properly

designing the cache access patterns.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 105

5/2

5/2

6/2

6/2
7/2

12/2

12/2

14/2

read wordline

write wordline

read wordline

write wordline

re
a
d

b
it

li
n
e

w
ri

te
b
it

li
n
e

M1

M2

out

Figure 5.18: Simplified schematic of a dual-ported cache memory array using 10-transistor-
cells. Some transistor dimensions are shown as: width(λ)/length(λ).

Circuits

Spiffee’s caches use two independent, single-ended bitlines for read and write operations.

Four wordlines consisting of a read pair and a write pair, control the cell. The memory is

fully static and thus does not require a precharge cycle.

The memory’s cells each contain ten transistors. Figure 5.18 shows a simplified schematic

of a cell in an array. Transistor widths and lengths are indicated for some transistors in units

of λ as the ratio: width/length. 3 Full transmission gates connect cells to bitlines to provide

robust low-Vdd operation. Transistors M1 and M2 disable the feedback “inverter” during

writes to provide reliable operation at low supply voltages. The read-path transmission gate

and inverter are sized to quickly charge or discharge the read bitline. Both write and read

bitlines swing fully from Gnd to Vdd , so only a simple inverter buffers the output before

continuing on to the cache bus interface circuitry.

3The variable λ is a unit of measure commonly used in chip designs which allows designs to scale to
different technologies.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 106

10T cell array

Sense amplifiers and bus interface

Write
P

re
de

co
de

rs

P
re

de
co

de
rs

W
or

dl
in

e
dr

iv
er

s
+

 d
ec

od
er

s

W
or

dl
in

e
dr

iv
er

s
+

 d
ec

od
er

s

side side

Read

Figure 5.19: Microphotograph of a 16-word × 40-bit cache array

Each cache memory array contains 16-words of 40-bit data. Figure 5.19 shows a die

microphotograph of one cache array. The left edge of the array contains the address prede-

coders, decoders, and wordline drivers necessary to perform writes to the cell array—which

occupies the center of the memory. The right edge contains nearly identical circuitry to

perform reads. The bottom center part of the memory contains circuits which read and

write the data to/from the array, and interface to the cache data bus.

5.4.3 Multipliers

As mentioned previously, the butterfly datapath requires 20-bit by 20-bit 2’s-complement

signed4 multipliers. To enhance performance, the multipliers are pipelined and use full,

non-iterative arrays. This section begins with an overview of multiplier design and then

describes the multipliers designed for Spiffee.

Multiplier basic principles

Figure 5.20 shows a block diagram of a generic hardware multiplier. The two inputs are the

multiplicand and the multiplier, and the output is the product. The method for hardware

4Signed multipliers are “four-quadrant” arithmetic units whose operands and product can be either
positive or negative.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 107

multiplicand

multiplier

product

Partial-product

Partial-product

generation

reduction

Carry-propagate
Addition

Figure 5.20: Generic multiplier block diagram

multiplication is similar to the one commonly used to perform multiplication using paper

and pencil.

In the first stage, the multiplier generates a diagonal table of partial products. Using

the simplest technique, the number of digits in each row is equal to the number of digits in

the multiplicand, and the number of rows is equal to the number of digits in the multiplier.

The second and third stages add the partial products together until the final sum, or

product, has been calculated. The second stage adds groups of partial product bits (often

in parallel) using various styles of adders or compressors. At the end of this stage, the many

rows of partial products are reduced to two rows. In the final stage, a carry-propagate adder

adds the two rows, resulting in the final product. The carry-propagate addition is placed in

a separate stage because an adder which propagates carries through an entire row is very

different from an adder which does not.

Multiplier encoding

A distinguishing feature of multipliers is how they encode the multiplier. In the generic

example discussed above, the multiplier is not encoded and the maximum number of partial

products are generated. By using various forms of Booth encoding, the number of rows is

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 108

reduced at the expense of some added complexity in the multiplier encoding circuitry and

in the partial product generation array. Because the size of the array has a strong effect on

delay and power, a reduction in the array size is very desirable.

When using Booth encoding, partial products are generated by selecting from one of

several quantities; typically: 0, ±multiplicand, ±2multiplicand, A multiplexer or mux

commonly makes the selection, which is why the partial product array is also commonly

called a Booth mux array.

A common classification of Booth algorithms uses the Booth-n notation, where n is an

integer and is typically 2, 3, or 4. A Booth-n algorithm normally examines n + 1 multiplier

bits, encodes n multiplier bits, and achieves approximately an n× reduction in the number

of partial product rows.

We will not review the details of Booth encoding. Bewick (1994) gives an overview

of different Booth encoding algorithms and provides useful information for designing a

multiplier. Waser and Flynn (1990) also provide a good, albeit brief, introduction to Booth

encoding.

Spiffee’s multipliers use Booth-2 encoding because this approach reduces the number

of multiplier rows by 50%, and does not require the complex circuits used by higher-order

Booth algorithms. Using Booth-2, the partial product array in the 20-bit by 20-bit multiplier

contains ten rows instead of twenty.

Dot diagrams

Dot diagrams are useful for showing the design of a multiplier’s array. The diagrams

show how partial products are laid out and how they compress through successive adder

stages. For the dot diagrams shown here, the following symbols are used with the indicated

meanings:

. = input_bit, can be either a 0 or 1

, = NOT(.)

0 = always zero

1 = always one

S = the partial product sign bit

E = bit to clear out sign_extension bits

e = NOT(E)

- = carry_out bit from (4,2) or (3,2) adder in adjacent column to the right

x = throw this bit away

Bewick (1994) provides further details for some of the symbols.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 109

Multiplier pipeline stage “0”

In the last part of the clock cycle prior to partial product generation, the bits of the

multiplier are Booth-2 encoded and latched before they are driven across the Booth mux

array in “stage 1.”

Multiplier pipeline stage 1

In the first of the three main pipeline stages, Booth muxes generate partial products in

the partial product array. Since the fixed-point data format requires the truncation of the

butterfly’s outputs to 20 bits for both real and imaginary components, when writing back

to the cache, it is unnecessary to calculate all 40 bits of the 20-bit by 20-bit multiplication.

To save area and power, 63 bits in the tree are not calculated. These removed bits reduce

the full tree by 27%, and are indicated by 0s in columns 0–13 of the first dot diagram:

E e e 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 0 0

1 E 0 0 0 0 0 0 0 0 0 lsb

1 E 0 0 0 0 0 0 0 |

1 E 0 0 0 0 0 multr

1 E 0 0 0 |

| 1 E . 0 msb

| 1 E . 0

|E . 0 S

S 1 <-- 0.1250 bias bit

4|3 3 3 2 1| 1 0

0|9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9|8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A bias bit in column 16 sets the mean of the truncation error to zero. The 20 bits in columns

20–39 are the significant bits which are saved at the end of the butterfly calculation. Bits

14–19 are kept as guard bits and are discarded as the butterfly calculation proceeds.

To compress the rows of partial products before latching them at the end of the first

pipeline stage, there are two rows of (3,2) or full adders (Sec. 5.4.5 further describes full

adders), and one row of (4,2) adders. Santoro (1989) provides an excellent introduction

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 110

to the use of (3,2) and (4,2) adders in multiplier arrays. At the end of this stage, the dot

diagram of the remaining bits is:

1 .

.

. 1

1

| . . 1

| 1 .

|. .

4|3 3 2 | 1 0

0|9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9|8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A dense row of flip-flops latches these remaining bits.

Multiplier pipeline stage 2

In the second multiplier pipeline stage, one row each of (3,2) and (4,2) adders sum the bits.

The output of these rows is then:

.

| 1

| 1 .

|. .

4|3 3 2 | 1 0

0|9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9|8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

The four rows of bits are then latched, which completes the second pipeline stage.

Multiplier pipeline stage 3

In the third pipeline stage, only one row of (4,2) adders is required to reduce the partial

products to two rows. The output of those adders is:

|. .

|. x

0 1

4|3 3 2 | 1 0

0|9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9|8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Although output bits from the (4,2) adders could be sent to a carry-propagate adder to

complete the multiplication, some operations related to the complex multiplication are

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 111

Booth mux array

(4,2) and (3,2) adders

Multiplicand
drivers

en
co

de
rs

B
oo

th

Encoded-multiplier
drivers

Figure 5.21: Microphotograph of a 20-bit multiplier

performed during the remainder of this cycle. After these additional operations, the two

rows of bits are latched.

Carry-propagate addition

In the final pipeline stage of the multiplier, a carry-propagate adder reduces the product to

a single row. The adder used is the same one used in other parts of the processor and is

described in Sec. 5.4.5.

Multiplier photos

Figure 5.21 contains a microphotograph of the multiplier just described. The Booth en-

coders are placed away from the central multiplier because it results in a more compact

layout overall. The Booth-encoded multiplier drivers and the multiplicand drivers reside in

the upper-right corner of the multiplier. The Booth mux array has a slight parallelogram

shape—like that shown in the first dot diagram.

Gaps in the partial product array are caused by the use of a near minimum number

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 112

Booth mux decoder

Booth mux decoder

Booth mux decoder

Figure 5.22: Microphotograph of Booth decoders in the partial product generation array

of (3,2) adders, (4,2) adders, and latches (for power reasons). A later version of the de-

sign (which has not yet been fabricated), places power supply bypass capacitors in these

openings.

The Booth mux array is a structure filled with dense wiring channels. Figure 5.22

shows a high-magnification view of three Booth mux decoders in the array. The high-

current nodes Vdd and Gnd run both vertically and horizontally, and Vn-well and Vp-well run

vertically. Because data flow downward in the multiplier, the most important direction to

route Vdd and Gnd wires is the vertical direction. In general, supply wires parallel to the

direction of data flow are far more effective in maintaining Vdd and Gnd potentials than

perpendicularly-routed supply wires. Multiplicand bits run diagonally across the Booth

mux array, and encoded multiplier bits run horizontally.

Figure 5.23 is a picture of a (4,2) adder, and shows the four inputs, in1–in4, as well

as the two outputs, out-sum and out-carry. The other input, Cin, and the other output,

Cout, are not indicated because they are not easily visible. Wires for Vn-well and Vp-well are

labeled and show the small additional area required by connecting and routing these nodes

independently from Vdd and Gnd . In the figure, the higher-level metal2 layer is slightly out

of focus and the lower metal1 layer is more sharply in focus.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 113

(4,2) adder

in1
in2

in3
in4

out-carry
out-sum

Vnwell

Vpwell

Vnwell

Figure 5.23: Microphotograph of a (4,2) adder

5.4.4 WN Coefficient Storage

The calculation of an N -point radix-2 FFT requires N/2 complex WN coefficients. Various

techniques requiring additional computation can reduce this number. However, for the

processor described here, where simplicity and regularity are a high priority, an on-chip

Read Only Memory (ROM) stores all 1024/2 = 512 coefficients. Because ROMs are among

the densest of all VLSI circuits, a ROM of this size does not present a large area cost.

As a type of memory, ROMs experience the same bitline leakage problems when operating

in a low-Vdd , low-Vt environment as the SRAM described in Sec. 5.4.1. To maintain func-

tionality under these conditions, the ROMs also employ the hierarchical-bitline technique.

Figure 5.24 shows a schematic of Spiffee’s ROM showing its hierarchical-bitline structure

where individual memory cells connect to local bitlines which then connect to global bitlines

through NMOS and PMOS connecting transistors. ROM memory cells are vastly simpler

than 6T SRAM memory cells as they contain only one or zero transistors. If a transistor is

present, its source connects to Gnd , to pull the bitline low when the cell is accessed. The

opposite data value could be obtained by connecting the transistor’s source to Vdd , but that

would increase the cell area and would be only mildly effective because the transistor’s body

effect would drop the bitline’s maximum voltage to Vdd−Vt. Instead, bitlines are precharged

to Vdd , and omitting the cell transistor altogether generates the opposite data value. Pulsing

the signal prechg low precharges the global bitline. To control bitline leakage and to enable

low-frequency operation, the signal keeper activates the weak M2 PMOS keeper transistors.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 114

M1

M2

prechg

keeper

G
lo

b
a
l
b
it

li
n
e

L
o
ca

l
b
it

li
n
e

wordline

wordline

wordline
G

n
d

local bitline connector

local bitline connector

30/2

5/2
out

Figure 5.24: Schematic of a ROM with hierarchical bitlines

To obtain maximum robustness and simplicity, bitlines swing fully from Vdd to Gnd—at

the expense of some energy-efficiency. The low impedance to Gnd of cell transistors allows

fast access times with minimum-sized array transistors. Full-swing bitlines greatly simplify

the sense amplifier design. A simple CMOS inverter with the PMOS device sized six times

larger than the NMOS device performs well in terms of speed and noise-margin. This circuit

also has the robust feature of being highly resistant to transient noise because the circuit

always settles to the correct value if a noise spike causes it to begin sensing incorrectly.

ROM arrays

Spiffee’s 512-word ROM consists of two 256-word by 40-bit arrays. Each array contains

sixteen blocks, corresponding to a maximum of sixteen cells per local bitline (since only

rarely are all sixteen bits in a block equal to the value requiring a transistor). Figure 5.25

shows a die microphotograph of a ROM array. Representative global and local bitlines are

indicated, and the sixteen blocks are clearly visible. Block select predecoders and drivers

use four bits from the ROM’s address to select and activate the correct block. Address

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 115

ROM cell array

Global bitline Local bitline

Wordline decoders and drivers

Block select drivers

Block select
predecoders

Predecoders
Bitline

keepers

Sense amps

and

Data drivers

Figure 5.25: Microphotograph of a ROM array

predecoders and wordline decoding circuitry assert the selected wordline using the remaining

four bits. Bitline keepers reside at one end of the cell array, with the sense amplifiers and

bus drivers at the other end.

The ROM cell array uses the minimum metal pitch allowed by the technology’s design

rules. The dense cell pitch made the layout of the wordline decoders and drivers difficult

as their pitch must match the pitch of the cell array. In retrospect, it would have been

better to relax the horizontal pitch (in Fig. 5.25) of the cell array even though the total

area would have been increased. Although the sense amplifier pitch was not as difficult to

match as it was for the wordline drivers, the vertical pitch (in Fig. 5.25) of the cell array

should probably have been relaxed somewhat as well.

5.4.5 Adders/Subtracters

The calculation of a complex radix-2 butterfly requires three additions and three subtrac-

tions. Since subtracters and adders have nearly identical hardware, this section will focus

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 116

InA InB

CinCout

Sum

Full adder

Figure 5.26: Full-adder block diagram

on adder design, as all principles apply directly to subtracters as well. To increase precision

through the datapath, adders and subtracters are 24 bits wide.

Adders are often based on a simple building block called a full adder, which sums three

inputs: InA, InB, and Cin; resulting in two output bits, Sum and Cout. Figure 5.26 is a

block diagram of a full adder and Table 5.2 contains a truth table showing the output values

for all eight possible input combinations. The three inputs as well as the output Sum all

have equal weightings of “1.” The output Cout has a weighting that is twice as significant,

or “2.”

A distinguishing feature of adders and subtracters is the method they use to propagate

carry bits, or carries. As with most VLSI structures, there is a trade-off between complexity

and speed. Waser and Flynn (1990) give a brief overview of different adder types. The

simplest, albeit slowest, approach is the ripple carry technique, in which carries propagate

sequentially through each bit of the adder. An n-bit ripple-carry adder can be built by

placing n of the full adders shown in Fig. 5.26 next to each other, and connecting adjacent

Cout and Cin signals.

A faster and more common type of adder is the carry-lookahead, or CLA adder. In

this approach, circuits develop propagate and generate signals for blocks of adders. The

number of levels of carry-lookahead depends on the number of adder blocks that feed into

a CLA block. For a regular CLA implementation, if r adder blocks feed into a CLA block,

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 117

Inputs Outputs

Cin InA InB Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 5.2: Truth table for a full adder

the number of levels of carry-lookahead logic for an n-bit adder will be (Waser and Flynn,

1990),

levels = �logr n� . (5.7)

Because Spiffee does not require the speed of a standard CLA adder, its adders use a

combination of CLA and ripple-carry techniques. At the lowest level, carries ripple across

three-bit blocks. The ripple-carry circuits reduce the complexity of the adder and thereby

reduce energy consumption. Across higher levels of adder blocks, CLA accelerates carry

propagation with r = 2 through three levels. The number of CLA levels is,

levels = logr(n/ripple length) (5.8)

= log2(24/3) (5.9)

= 3. (5.10)

Figure 5.27 shows a block diagram of the adder.

Figure 5.28 is a microphotograph of a fabricated adder. The two 24-bit operand buses

enter the top of the adder and the 25-bit sum exits the bottom. The dense row of 24 full

adders can be seen in the top half of the structure and the more sparsely-packed carry-

lookahead section occupies the lower half.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 118

Cout Cin

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

F
u
ll

a
d
d
er

Carry lookahead

Carry lookahead

Carry lookahead

Carry lookaheadCarry lookaheadCarry lookaheadCarry lookahead

Figure 5.27: 24-bit adder block diagram

Carry-lookahead circuits

Full-
adders

Inputs

Sum

Figure 5.28: Microphotograph of a 24-bit adder

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 119

5.4.6 Controllers

Spiffee’s controllers maintain the state of the processor and coordinate the synchronization

of the functional units. Chip control is performed by two main sub-units: the memory

controller and the central processor controller. The system is partitioned in this way because

the operation of the main memory is largely independent from the rest of the system.

Memory controller

The memory controller operates in a “slave” mode since it accepts commands from the

main processor controller. Output signals from the memory controller run to either the

main memory or the cache set which is currently connected to the memory.

Processor controller

The processor controller maintains the system-level state of Spiffee including the current

epoch, group, pass, and butterfly. There are two basic modes of operation:

1. Single FFT — A single FFT is calculated at high speed followed by a halting of the

processor.

2. Free run — FFTs are run continuously.

The primary inputs to the processor controller are slow-speed command and test signals

which include:

• ResetChip

• Go — begins high-speed execution

• FreeRun — asserts continuous running mode

• Test mode — enables scan paths

Figure 5.29 shows a microphotograph of the two controllers. The four counters for the

epoch, group, pass, and butterfly are indicated inside the processor controller. The non-

synthesized, hand-laid-out style of the controller’s circuits is evident in the figure.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 120

Main processor controller

Memory
controller

P
as

s
co

un
te

r

B
ut

te
rf

ly
 c

ou
nt

er

E
po

ch
 c

ou
nt

er

G
ro

up
 c

ou
nt

er

Figure 5.29: FFT processor controller

5.4.7 Clocking Methodology, Generation and Distribution

Spiffee’s clocking scheme uses one single-phase global clock for the entire processor. There

are no local clock buffers, as the global clock runs in a single chip-wide network. The

functional units operate with a high fraction of utilization—meaning functional units are

busy nearly every cycle. High utilization eliminates the need for clock gating—which is

impossible with a single global clock. The advantages of a single non-buffered clock are

that it is much simpler to design, and it has very low clock skew.

The clocking system contains an on-chip digitally-programmable oscillator, control cir-

cuitry, and a global clock driver.

Flip-flop design

Due to their robust operation, static edge-triggered flip-flops are used instead of latches.

Figure 5.30 shows the schematic of a flip-flop. Spice simulations with low-Vt transistors

operating at low supply voltages show that placing a transmission gate in series with the

two feedback inverters greatly improves the range over which the flip-flop operates. The

use of full transmission gates instead of NMOS pass gates similarly improves supply-voltage

operating range. The generation of φ and φ locally in each flip-flop slightly increased the

size of each cell but reduced the loading on the global clock network by a factor of four.

Layout and transistor sizing of the flip-flop cells was designed and simulated to avoid race

conditions.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 121

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ
Clock

DataIn DataOut

Figure 5.30: Schematic of a flip-flop with a local clock buffer

Oscillator

To achieve operation over a wide range of frequencies, the on-chip oscillator can be config-

ured into 7-inverter, 11-inverter, or 19-inverter lengths. Typical measured frequencies in the

fastest configuration are approximately eight times greater than frequencies in the slowest

configuration.

The oscillator’s stability is relatively insensitive to noise on the processor’s power supply

lines or in the substrate. Good noise resistance is achieved by making all control inputs

(except two) digital and locally latched. In addition, large substrate guard rings and inde-

pendent Vdd and Gnd nodes help isolate the oscillator from the rest of the chip.

Clock controller

The clock controller operates independently of the processor and memory controllers and

has three primary modes of operation:

1. Internal oscillator, free run.

2. Internal oscillator, burst — The clock runs at high speed for 1 to 63 cycles. In con-

junction with the scan paths, bursting the clock for a small number of cycles may

enable the accurate measurement of individual functional unit latencies. The clock

should be burst for the number of clock cycles equal to the number of pipeline stages

in the functional unit, plus one.

3. External clock input.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 122

clock

O
sc

ill
at

or

Power rails and supply-bypass capacitors

Programmable

generator

Final clock
driver

Second-to-the-last driver

Third-to-the-last driver

Figure 5.31: Microphotograph of clocking circuitry

Though relatively simple in design, the clock controller must operate at very high speeds—

faster than the fastest functional unit on the chip.

Global clock buffer

The final three stages of the global clock buffer have a fanout of approximately 4.5 and

are ratioed with the PMOS transistors 1.5× larger than corresponding NMOS transistors.

Transistors of the three final stages have the following widths:

Third-to-the-last stage — 360λ PMOS × 240λ NMOS

Second-to-the-last stage — 1560λ PMOS × 1040λ NMOS

Final stage — 7680λ PMOS × 5120λ NMOS

where λ = 0.35 µm. Figure 5.31 shows a microphotograph of the clock generation and

clock buffer circuitry. Rows of control signal latches surround the oscillator. The final three

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 123

Vdd

Gnd

Vdd

Vnwell

Vpwell

Vnwell

Vpwell

O
ut

pu
t

Scan input

O
ut

pu
t

Scan input
Mux

Figure 5.32: Microphotograph of scannable latches

stages of clock buffers are adjacent to a large array of bypass capacitors which filter the

clock driver’s Vdd and Gnd supply rails.

5.4.8 Testing and Debugging

To reduce the die size, the chip contains only nineteen I/O signals for data and control. To

enable observation and control of data throughout the chip with a low I/O pad count, many

flip-flops possess scan-path capability. While the global test signal test mode is asserted, all

scannable flip-flops are connected in a 650-element scan path. Data stored in flip-flops are

shifted off-chip one bit at a time through a single I/O pad, and new data are simultaneously

shifted into the shift chain through another I/O pad. In this way, the state of the scannable

flip-flops is observed and then either restored or put into a new state.

The scan path is implemented by placing a multiplexer onto the input of each flip-flop.

In normal mode, the multiplexer routes data into the flip-flop. In test mode, the output

of an adjacent flip-flop is routed into the input. Figure 5.32 shows a high-magnification

microphotograph of a column of flip-flops. The wire labeled Scan input is used during

test mode to route the output of the lower flip-flop into the input of the upper flip-flop.

Another interesting visible feature is the well/substrate connections on the far right side

labeled Vnwell and Vpwell. For these flip-flops, it is sufficient to contact the well/substrate

only on one end of the circuit, and considerable area is saved by not routing Vnwell and

Vpwell rails parallel to the Vdd and Gnd power rails.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 124

Algorithmic design Algorithmic design

MatlabC

Circuit simulation

Hspice

Layout

Magic

Architectural design

Verilog

Ext2sim

Layout extractor

Irsim

Switch-level simulator

Chip fabrication
C, Matlab

Test generation

irsim2hp.c

tester tester

HP8180,8182QDT

Figure 5.33: Design flow and CAD tools used

5.5 Design Approach and Tools Used

This section presents an overview of the design methodology and the CAD tools used to

design the Spiffee processor. Figure 5.33 contains a flowchart depicting the primary steps

taken in the design, fabrication, and test of the processor.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 125

5.5.1 High-Level Design

The C and Matlab programming languages were used for algorithmic-level simulation and

verification because of their high execution speed. In total, about ten simulations at various

levels of abstraction were written.

Next, details of the architecture were fleshed out in more detail using the Verilog hard-

ware description language and a Cadence Verilog-XL simulator. Approximately twenty

total modules for the processor and its sub-blocks were written.

Circuit-level simulations were performed using Hspice. SRAM, cache, and ROM circuits

required thorough Hspice analysis because of their more analog-like nature, and because

their circuits are not as robust as static logic circuits. Other circuits were simulated using

Hspice more for performance measurement reasons than to ensure functionality.

5.5.2 Layout

Because of the unusual circuit styles and layout required for the low-Vdd , low-Vt circuits,

the entire chip was designed “full-custom”—meaning the design was done (almost) entirely

by hand without synthesis or place-and-route tools. Layout was done using the CAD tool

Magic. The only layout that was not done completely by hand was the programming of

the ROMs. A C-language program written by the author places ROM cells in the correct

locations and orientations in the ROM array and generates a Magic data file directly.

The extraction of devices and parasitic capacitances from the layout was done using

Magic and Ext2sim. The switch-level simulator Irsim was used to run simulations on

extracted layout databases. Test vectors for Irsim were generated using a combination

of C and Matlab programs.

5.5.3 Verification

Chip testing was first attempted using an HP8180 Data Generator and an HP8182 Data

Analyzer. Irsim test vectors were automatically converted to tester command files using

the C program irsim2hp, which was written by the author. Because of limitations on vector

length and the inability of the testers to handle bidirectional chip signals, testing using the

HP8180 and HP8182 was eventually abandoned in favor of the QDT tester. A C program

written by the author directly reads Irsim command files and controls the QDT tester. The

QDT tester was successfully used to test and measure the Spiffee1 processor.

CHAPTER 5. AN ENERGY-EFFICIENT, SINGLE-CHIP FFT PROCESSOR 126

5.6 Summary

This chapter presents key features of the algorithmic, architectural, and physical-level design

of the Spiffee processor. Spiffee is a single-chip, 1024-point complex FFT processor designed

to operate robustly in a low-Vdd , low-Vt environment with high energy-efficiency.

The processor utilizes the cached-FFT algorithm detailed in Ch. 4 using a main memory

of 1024 complex words and a cache of 32 complex words. To attain high performance, Spiffee

has a well-balanced, nine-stage pipeline that operates with a short cycle time.

Chapter 6

Measured and Projected Spiffee

Performance

This chapter reports measured results of Spiffee1, which is a version of the Spiffee processor

fabricated using a high-Vt
1 process. Clock frequency, FFT execution time, energy dissipa-

tion, energy × time, and power data are presented and compared with other processors.

A portion of the processor was manufactured using a 0.26 µm low-Vt
1 process; data from

those circuits are used to predict the performance of a complete low-Vt version of Spiffee.

Finally, results of simulations which estimate the performance of a hypothetical version of

Spiffee fabricated in a 0.5 µm ULP process are presented.

6.1 Spiffee1

The Spiffee processor described in Ch. 5 was manufactured during July of 1995 using a

standard, single-poly, triple-metal CMOS technology. Hewlett-Packard produced the device

using their CMOS14 process. MOSIS handled foundry-interfacing details and funded the

fabrication. MOSIS design rules corresponding to a 0.7 µm process (λ = 0.35 µm) with

Lpoly = 0.6 µm were used. The die contains 460,000 transistors and occupies 5.985 mm ×
8.204 mm. Appendix A contains a summary of Spiffee1’s key features. The processor is

fully functional on its first fabrication.

1In this chapter, “high-Vt” refers to MOS devices or processes with transistor thresholds in the range of
0.7V–0.9V, and “low-Vt” refers to MOS devices or processes with thresholds less than approximately 0.3V.

127

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 128

Well/substrate bias NMOS PMOS

NMOS: Vbs, PMOS: Vsb Vt Vt

(Volts) (Volts) (Volts)

−2.0 V 0.96 V −1.14 V

0.0 V 0.68 V −0.93 V

+0.5 V 0.48 V −0.82 V

Table 6.1: Measured Vt values for Spiffee1

Although optimized to operate in a low-Vt CMOS process, Spiffee was manufactured

first in a high-Vt process to verify its algorithm, architecture, and circuits. Figure 6.1 shows

a die microphotograph of Spiffee1. Figure 5.11 on page 94 shows a corresponding block

diagram.

6.1.1 Low-Power Operation

Since Spiffee1 was fabricated using a high-Vt process, tuning transistor thresholds through

the biasing of its n-wells and p-substrate is unnecessary for normal operation. However,

because the threshold voltages are so much higher than desired, lowering the thresholds

improves low-Vdd performance. Thresholds are lowered by forward biasing the n-wells and

p-substrate.

Forward biasing the wells and substrate is not a standard technique and entails some

risk. Positively biasing the n-well/p+ and p-substrate/n+ diodes significantly increases the

chances of latchup, and results in substantial diode currents as the bias voltages approach

+0.7 V. Despite this, latchup was never observed throughout the testing of multiple chips

at biases of up to +0.6V. At supply voltages below approximately 0.9V, the risk of latchup

disappears as there is insufficient voltage to maintain a latchup condition.

Table 6.1 details the 480 mV and 320 mV Vt tuning range measured for NMOS and

PMOS devices respectively. Because the absolute value of the PMOS thresholds is so much

larger than the NMOS thresholds, the PMOS threshold voltage is the primary limiter of

performance at low supply voltages.

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 129

Sub

Sub
Sub Add

Add

Add

Multiplier

ROMs

C
o

n
tr

o
l

Cache

Main

Memory

I/O Interface
C

lo
ck

MultiplierMultiplier

Multiplier

CacheCache

Cache

Figure 6.1: Microphotograph of the Spiffee1 processor

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 130

0.5 1 1.5 2 2.5
0.75

1

1.25

1.5

1.75

2

Clock frequency
Energy per FFT

Supply Voltage, Vdd (V)R
a
ti

o
:

R
ed

u
ce

d
P

M
O

S
V

t
/

N
o
rm

a
l
P

M
O

S
V

t

Figure 6.2: Measured change in performance and energy-consumption with an n-well bias
of Vsb = +0.5 V applied, compared to operation without bias

The device operates at a minimum supply voltage slightly less than 1.0V. At Vdd = 1.1V,

the chip runs at 16MHz and 9.5mW with the n-wells forward biased +0.5V (Vsb = +0.5V)—

which is a 60% improvement over the 10MHz operation without bias. With +0.5V of n-well

bias, 11 µA of current flows from the n-wells while the chip is active. Figure 6.2 shows the

dramatic improvement in operating frequency and the slight increase in energy consumption

per FFT caused by adjusting PMOS Vts, for various values of Vdd .

6.1.2 High-Speed Operation

At a supply voltage of 3.3V, Spiffee is fully functional at 173MHz—calculating a 1024-point

complex FFT in 30µsec, while dissipating 845mW. Though stressing the device beyond its

specifications, the processor is functional at 201 MHz with a supply voltage of 4.0 V.

Despite having a favorable maximum clock rate, the chip’s circuits are not optimized

for high-speed operation—in fact, nearly all transistors in logic circuits are near minimum

size. The processor owes its high speed primarily to its algorithm and architecture, which

enable the implementation of a deep and well-balanced pipeline.

6.1.3 General Performance Figures

This section presents several performance measures for the Spiffee1 processor including:

clock frequency, energy dissipation, energy × time, and power. Each plot shows data

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 131

0 0.5 1 1.5 2 2.5 3 3.3
0

25

50

75

100

125

150

175

Supply Voltage, Vdd (V)

C
lo

ck
F
re

q
u
en

cy
(M

H
z) No Bias

0.5 V Bias
Approximation

Figure 6.3: Maximum operating frequency vs. supply voltage

for the processor both with and without well and substrate biases. Solid lines indicate

performance without bias (Vn-well = Vdd and Vp-substrate = Gnd), and dashed lines indicate

operation with an n-well forward bias of +0.5 V (Vdd − Vn-well = +0.5 V or Vsb = +0.5 V)

and no substrate bias (Vp-substrate = Gnd). Measurements with bias applied were not made

for supply voltages above 2.5 V because the performance with or without bias is virtually

the same at higher supply voltages. Finally, an FFT sample input sequence is given, with

FFT transforms calculated by both Matlab and Spiffee1.

Clock frequency

Figure 6.3 shows the maximum clock frequency at which Spiffee1 is functional, for var-

ious supply voltages. Although device and circuit theory predict a much more complex

relationship between supply voltage and performance, the voltage vs. speed plot shown is

approximated reasonably well by a constant slope for Vdd values greater than approximately

0.9 V ≈ Vt using the equation,

Max clock freq ≈ kf (Vdd − Vt), Vdd > Vt (6.1)

where kf ≈ 72 MHz/V. At higher supply voltages, the performance drops off slightly with

a lower slope. This dropoff is likely caused by the velocity saturation of carriers.

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 132

0 0.5 1 1.5 2 2.5 3 3.3
0

5

10

15

20

25

30

Supply Voltage, Vdd (V)

E
n
er

g
y

(µ
J

p
er

1
0
2
4
-p

o
in

t
tr

a
n
sf

o
rm

)

No Bias
0.5 V Bias
Approximation

Figure 6.4: Energy consumption vs. supply voltage

Energy consumption

Figure 6.4 is a plot of the energy consumed per FFT by the processor over different supply

voltages. As expected from considerations given in Sec. 3.2.3 on page 35 and by Eq. 3.5,

the energy consumption is very nearly quadratic with a form closely approximated by,

Energy consumption ≈ keV
2
dd , (6.2)

where ke ≈ 2.4 µJ/V2.

Energy × time

The value of considering a merit function which incorporates energy-efficiency and per-

formance is discussed in Sec. 3.1.1 on page 33. A popular metric which does this is

energy × time (or E×T), where time is the same as delay and is proportional to 1/frequency.

Figure 6.5 shows Spiffee1’s measured E × T versus supply voltage.

For values of Vdd ≤ 1.5 V, the sharp increase in E × T is due to a dramatic increase in

delay as Vdd approaches Vt. For values of Vdd ≥ 2.5 V, E × T increases due to an increase

in energy consumption.

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 133

0 0.5 1 1.5 2 2.5 3 3.3
0

0.5

1

1.5

2

2.5

3

Supply Voltage, Vdd (V)

E
n
er

g
y
×

T
im

e
p
er

F
F
T

(n
J

se
c)

No Bias
0.5 V Bias
Approximation

Figure 6.5: E × T per FFT vs. supply voltage

For Spiffee1, E × T per 1024-point complex FFT is,

E × T = energy-per -FFT × time-per -FFT (6.3)

= energy-per -FFT × cycles-per -FFT

cycles-per -sec
(6.4)

= energy-per -FFT × 5281

frequency
. (6.5)

Using Eqs. 6.1 and 6.2, the E × T per FFT for Vdd > Vt is,

E × T ≈ keV
2
dd × 5281

kf (Vdd − Vt)
(6.6)

≈ 5281 ke

kf

V 2
dd

(Vdd − Vt)
. (6.7)

Equation 6.7 is plotted on Fig. 6.5 for comparison with the measured data.

Although the exact location of the E×T minimum is not discernable in Fig. 6.5 because

of the spacing of the samples, it clearly falls between supply voltages of 1.4 V and 2.5 V.

The magnitude of the E × T curve is expected to be fairly constant for supply voltages in

the vicinity of 3Vt (Horowitz et al., 1994). Analytically, the minimum value of E ×T is the

value of Vdd for which,

d

dVdd

E × T = 0. (6.8)

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 134

From Eq. 6.7, this occurs near where,

d

dVdd

[
5281 ke

kf

V 2
dd

(Vdd − Vt)

]
= 0, Vdd > Vt (6.9)

d

dVdd

V 2
dd

(Vdd − Vt)
= 0, Vdd > Vt (6.10)

2 Vdd · (Vdd − Vt) − V 2
dd

(Vdd − Vt)2
= 0 (6.11)

2 Vdd (Vdd − Vt) − V 2
dd = 0 (6.12)

2 Vdd (Vdd − Vt) = V 2
dd (6.13)

2(Vdd − Vt) = Vdd (6.14)

2Vdd − Vdd = 2Vt (6.15)

Vdd = 2Vt (6.16)

Standard long-channel quadratic transistor models predict the minimum E × T value at

Vdd = 3Vt (Burr and Peterson, 1991b). However, for devices that exhibit strong short-

channel effects, the drain current increases at a less-than-quadratic rate (i.e., Ids ∝ (Vgs −
Vt)

x, x < 2), and the minimum E × T point is at a lower supply voltage than 3Vt. The

measured data given here are consistent with this expectation since a 0.6µm process exhibits

some short-channel effects.

From Table 6.1, the larger Vt is the PMOS Vt which is |−0.93V| = 0.93V. The minimum

value of E × T is then expected to be near the point where Vdd = 2Vt = 1.86 V, which is

consistent with the E × T plot of Fig. 6.5.

Power dissipation

Figure 6.6 shows a plot of Spiffee1’s power dissipation over various supply voltages. The

operating frequency at each supply voltage is the maximum at which it would correctly

operate.

Sample input/output waveform

As part of the verification procedure, various data sequences were processed by both Matlab

and Spiffee1, and the results compared. The top subplot in Fig. 6.7 shows a plot of the

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 135

0 0.5 1 1.5 2 2.5 3 3.3
0

200

400

600

800

1000

Supply Voltage, Vdd (V)

P
o
w

er
(m

W
)

No Bias
0.5 V Bias

Figure 6.6: Power dissipation vs. supply voltage

input function,

cos

(
2π · 23

N

)
+ sin

(
2π · 83

N

)
+ cos

(
2π · 211

N

)
− j sin

(
2π · 211

N

)
(6.17)

where N = 1024. The solid line represents the real component, and the dashed line rep-

resents the imaginary component of the sequences. The middle subplot shows the FFT

of Eq. 6.17 calculated by Matlab, and the bottom subplot shows the FFT calculated by

Spiffee1. Output from Spiffee1 differs from the Matlab output only by a scaling factor and

the error introduced by Spiffee1’s fixed-point arithmetic.

6.1.4 Analysis

Table 6.2 contains a summary of relevant characteristics of thirteen FFT processors cal-

culating 1024-point complex FFTs. Seven of the processors are produced by companies,

and six by researchers from universities. Information for processors without citation was

gathered from company literature, WWW pages, and/or private communication with the

designers. CMOS Technology is the minimum feature size of the CMOS process the chip was

fabricated in. When two values are given, the first value is the base design rule dimension

for the technology, and the second value is the minimum channel length. Datapath width, or

DPath, is the width in number of bits, of the multipliers for the scalar datapaths. Number

of chips values with +’s indicate additional memory chips beyond the number given are

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 136

−512 −384 −256 −128 0 128 256 384 512
−1

−0.5

0

0.5

1
x 105

−512 −384 −256 −128 0 128 256 384 512
−2

0

2

4
x 107

−512 −384 −256 −128 0 128 256 384 512
−2

0

2

4
x 104

In
p
u
t

F
F
T

b
y

M
a
tl

a
b

F
F
T

b
y

S
p
iff

ee
1

Figure 6.7: 1024-point complex input sequence with output FFTs calculated by both
Matlab and Spiffee1

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 137

Y
ea

r
C

M
O

S
D

at
ap

at
h

10
24

-p
oi

n
t

P
ow

er
C

lo
ck

N
u
m

N
or

m
F
F
T

s

P
ro

ce
ss

or
T
ec

h
w

id
th

E
x
ec

T
im

e
F
re

q
of

A
re

a
p
er

(µ
m

)
(b

it
s)

(µ
se

c)
(m

W
)

(M
H

z)
ch

ip
s

(m
m

2
)

E
n
er

gy

L
S
I,

L
64

28
0

(R
u
et

z,
19

90
)

19
90

1.
5

20
26

20
,0

00
40

20
23

3
2.

9

P
le

ss
ey

,
16

51
0A

(O
’B

ri
en

,
19

89
)

19
89

1.
4

16
98

3,
00

0
40

1
22

3.
6

H
on

ey
w

el
l,

D
A

S
P

(M
ag

ar
,
19

88
)

19
88

1.
2

16
10

2
∼

5,
25

0
−

2+
−

1.
7

Y
.
Z
h
u
,
U

of
C

al
ga

ry
19

93
1.

2
16

15
5

−
33

−
−

−
D

as
sa

u
lt

E
le

ct
ro

n
iq

u
e

19
90

1.
0

12
10

.2
15

,0
00

25
6

24
0

3.
4

T
ex

M
em

S
y
s,

T
M

-6
6

−
0.

8
32

65
7,

00
0

50
2+

−
3.

4

C
ob

ra
,
C

ol
.

S
ta

te
(S

u
n
ad

a,
19

94
)

19
94

0.
75

23
9.

5
7,

70
0

40
16

+
11

04
+

12
.4

S
ic

om
,
S
N

C
96

0A
19

96
0.

6
16

20
2,

50
0

65
1

−
9.

0

C
N

E
T

,
E

.
B

id
et

(1
99

5)
a

19
94

0.
5

10
51

30
0

20
1

10
0

13
.6

M
.
W

os
n
it

za
,
E

T
H

,
Z
u
ri

ch
(1

99
8)

b
19

98
0.

5
32

80
60

00
66

1
16

7
2.

4

C
or

d
ic

F
F
T

,
R

.
S
ar

m
ie

n
to

(1
99

8)
c

19
98

0.
6

G
aA

s
8

7.
5

12
,5

00
70

0
1

−
2.

0

S
p
iff

ee
1,

V
d
d

=
3.

3
V

19
95

0.
7/

0.
6

20
30

84
5

17
3

1
25

27
.6

S
p
iff

ee
1,

V
d
d

=
2.

5
V

19
95

0.
7/

0.
6

20
41

36
3

12
8

1
25

47
.0

S
p
iff

ee
1,

V
d
d

=
1.

1
V

19
95

0.
7/

0.
6

20
33

0
9.

5
16

1
25

2
2
3

S
p
iff

ee
lo

w
-V

t
d
,
V
d
d

=
0.

4
V

19
95

0.
8/

0.
26

20
93

9.
7

57
1

25
8
8
7

T
a
b
le

6
.2

:
C

o
m

p
ar

is
on

of
p
ro

ce
ss

or
s

ca
lc

u
la

ti
n
g

10
24

-p
oi

n
t

co
m

p
le

x
F
F
T

s

a
T

h
e

p
ro

ce
ss

o
r

b
y

B
id

et
e
t
a
l.

ca
lc

u
la

te
s

F
F
T

s
u
p

to
8
1
9
2

p
o
in

ts
.

b
T

h
e

p
ro

ce
ss

o
r

b
y

W
o
sn

it
za

e
t
a
l.

co
n
ta

in
s

o
n
-c

h
ip

su
p
p
o
rt

fo
r

2
-d

im
en

si
o
n
a
l
co

n
v
o
lu

ti
o
n
.

c
T

h
e

ch
ip

b
y

S
a
rm

ie
n
to

e
t
a
l.

is
fa

b
ri

ca
te

d
u
si

n
g

a
G

a
A

s
te

ch
n
o
lo

g
y.

d
S
p
iff

ee
lo

w
-V

t
n
u
m

b
er

s
a
re

ex
tr

a
p
o
la

te
d

fr
o
m

m
ea

su
re

m
en

ts
o
f
a

p
o
rt

io
n

o
f
th

e
ch

ip
fa

b
ri

ca
te

d
in

a
lo

w
-V

t
p
ro

ce
ss

.

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 138

0.5 0.6 0.8 1 1.2 1.4 1.5
0

25

50

75

100

125

150

175

200

Spiffee @ 3.3 V

Technology (µm)

C
lo

ck
F
re

q
u
en

cy
(M

H
z)

Figure 6.8: CMOS technology vs. clock frequency for processors in Table 6.2

required for data and/or coefficients. Normalized Area is the silicon area normalized to a

0.5 µm technology with the relationship,

Normalized Area =
Area

(Technology/0.5 µm)2
. (6.18)

The final column, FFTs per Energy, compares the number of 1024-point complex FFTs

calculated per energy. An adjustment is made to the metric that, to first order, factors out

technology and the datapath word width. The adjustment makes use of the observation

that roughly 1/3 of the energy consumption of the 20-bit Spiffee processor scales as DPath2

(e.g., multipliers) and approximately 2/3 scales linearly with DPath. The value is calculated

by,

FFTs per Energy =
Technology ×

(
2
3

DPath
20 + 1

3

(
DPath

20

)2)
Power × Exec Time × 10−6

. (6.19)

While clock speed is not the only factor, it is certainly an important factor in determin-

ing the performance and area-efficiency of a design. Figure 6.8 compares the clock speed

of Spiffee1 operating at Vdd = 3.3 V with other FFT processors, versus their CMOS tech-

nologies. Spiffee1 operates with a clock frequency that is 2.6× greater than the next fastest

processor.

Figure 6.9 compares Spiffee’s adjusted energy-efficiency with other processors. Operating

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 139

0

25

50

75

100

125

150

175

200

225

250

A
d
ju

st
ed

F
F
T

s
p
er

E
n
er

g
y

Spiffee @ 1.1 V

Spiffee @ 3.3 V

Figure 6.9: Adjusted energy-efficiency (FFTs per Energy, see Eq. 6.19) of various FFT
processors

with a supply voltage of 1.1 V, Spiffee is sixteen times more energy-efficient than the previ-

ously most efficient known processor.

To compare E × T values of the processors in Table 6.2, we define,

E × T =
Exec Time

FFTs per Energy
. (6.20)

Since the quantity FFTs per Energy is compensated, to first order, for different Technology

and DPath values, the E×T product is also compensated. Figure 6.10 compares the E×T

values for various FFT processors versus their silicon areas, normalized to 0.5 µm. The

dashed line highlights a constant E × T × Norm Area contour.

The most comprehensive metric we consider is the product E × T × Norm Area. The

Spiffee1 processor running at a supply voltage of 2.5 V has a E × T × Norm Area product

that is seventeen times lower than the processor with the previously lowest value.

The cost of a device is a strong function of its silicon area. Therefore, processors with

high performance and small area will be the most cost efficient. Figure 6.11 shows the first-

order-normalized FFT calculation time (ExecTime/Technology) versus normalized silicon

area for several FFT processors. The dashed line shows a constant Time ′ × Norm Area

contour. The processor presented here compares favorably with other processors despite

its lightly-compacted floorplan and its less area-efficient circuits—which were designed for

low-voltage operation and Vt tunability.

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 140

10
1

10
2

10
3

10
0

10
1

Area, normalized to 0.5 µm (mm2)

E
n
er

g
y
×

T
im

e

Spiffee @ 2.5 V Constant E × T × Norm Area

Figure 6.10: Silicon area vs. E × T (see Eq. 6.20) for several FFT processors

10
1

10
2

10
3

10
1

10
2

Area, normalized to 0.5 µm (mm2)

F
F
T

E
x
ec

u
ti

o
n

T
im

e
/

T
ec

h
n
o
lo

g
y

(µ
se

c/
µ
m

)

Spiffee @ 3.3 V

Constant Time′ × Norm Area

Figure 6.11: Silicon area vs. FFT execution time for CMOS processors in Table 6.2

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 141

6.2 Low-Vt Processors

6.2.1 Low-Vt 0.26 µm Spiffee

Although to date Spiffee has been fabricated only in a high-Vt process, portions of it have

been fabricated in a low-Vt process. Fabrication for three test chips was provided by Texas

Instruments in an experimental 0.25 µm process similar to one described by Nandakumar

et al. (1995). The process provides two thresholds with the lower threshold being approxi-

mately 200 mV, and the drawn channel length Lpoly = 0.26 µm. The chips were fabricated

using 0.8 µm design rules and with all transistors having the lower threshold.

All three test chips contain the identical oscillator, clock controller circuits, and layout

described in Sec. 5.4.7 on page 120. The oscillator and controller contain approximately 1300

transistors and are supplied power by an independent pad. Unfortunately, the oscillator’s

power supply in the low-Vt versions also powers some extra circuits not included in the

Spiffee1 version, which caused the estimates for a complete low-Vt Spiffee processor to be a

little high.

The test circuits are functional at a supply voltage below 300mV. Power and performance

measurements were made of the test chips. From measured low-Vt-chip data, measured

Spiffee1 data, and measured data of Spiffee1’s oscillator; the following estimates were made

for a low-Vt version of Spiffee running at a supply voltage of 400 mV:

• 57 MHz clock frequency

• 1024-point complex FFT calculated in 93 µsec

• power dissipation less than 9.7 mW

• more than 65× greater energy-efficiency than the previously most efficient processor

Table 6.2 includes more information on the hypothetical low-Vt processor.

6.2.2 ULP 0.5 µm Spiffee

A version of Spiffee fabricated in a ULP process is expected to perform even better than the

low-Vt version. Simulations in one typical 0.5 µm ULP process give the following estimates

CHAPTER 6. MEASURED AND PROJECTED SPIFFEE PERFORMANCE 142

while operating at a supply voltage of 400 mV:

• 85 MHz clock frequency

• 1024-point complex FFT calculated in 61 µsec

• power dissipation of 8 mW

• more than 75× more energy-efficient than the previously most efficient processor

Although the adjusted energy-efficiency of the ULP version is comparable to the low-Vt

version, the performance is significantly better in the ULP case since this data comes from

a processor with 0.5 µm transistors while the low-Vt processor has 0.26 µm transistors.

Chapter 7

Conclusion

7.1 Contributions

The key contributions of this research are:

1. The cached-FFT algorithm, which exploits a hierarchical memory structure to increase

performance and reduce power dissipation, was developed. New terms describing the

form of the cached-FFT (epoch, group, and pass), are introduced and defined. An

implementation procedure is provided for transforms of variable lengths, radices, and

cache sizes.

The cached-FFT algorithm removes a processor’s main memory from its critical path

enabling: (i) higher operating clock frequencies, (ii) reduced power dissipation by

reducing communication energy, and (iii) a clean partitioning of the system into high-

activity and low-activity portions—which is important for implementations using low-

Vdd , low-Vt CMOS technologies.

2. A wide variety of circuits were designed which operate robustly in a low-Vdd , low-Vt en-

vironment. The circuit types include: SRAM, multi-ported SRAM, ROM, multiplier,

adder/subtracter, crossbar, control, clock generation, bus interface, and test circuitry.

These circuits operate at a supply voltage under 1.0V using a CMOS technology with

PMOS thresholds of −0.93 V. A few of these circuits were fabricated in a technology

with thresholds near 200 mV and were verified functional at supply voltages below

300 mV.

143

CHAPTER 7. CONCLUSION 144

3. A single-chip, 1024-point complex FFT processor was designed, fabricated, and veri-

fied to be fully functional on its first fabrication. The processor utilizes the cached-

FFT algorithm with two sets of two banks of sixteen-word cache memories. In order

to increase the overall energy-efficiency, it operates with a low supply voltage that

approaches the transistor threshold voltages.

The device contains 460,000 transistors and was fabricated in a standard 0.7 µm /

0.6 µm CMOS process. At a supply voltage of 1.1 V, the processor calculates a 1024-

point complex FFT in 330 µsec while dissipating 9.5 mW—which corresponds to an

adjusted energy-efficiency over sixteen times greater than the previously highest. At

a supply voltage of 3.3 V, it calculates an FFT in 30 µsec while consuming 845 mW

at a clock frequency of 173 MHz—which is a clock speed 2.6 times higher than the

previously fastest.

A version of the processor fabricated in a 0.8µm/0.26µm low-Vt technology is expected

to calculate a 1024-point transform in 93 µsec while dissipating 9.7 mW. A version

fabricated in a 0.50 µm ULP process is projected to calculate FFT transforms in

61 µsec while consuming 8 mW. These low-Vt devices would operate 65× and 75×
more efficiently than the previously most efficient processor, respectively.

7.2 Future Work

This section suggests enhancements to the precision and performance of any processors

using the approach presented in this dissertation. The feasibility of adapting the Spiffee

processor to more complex FFT systems is also discussed.

7.2.1 Higher-Precision Data Formats

Modern digital processors represent data using notations that generally can be classified

as either fixed-point, floating-point, or block-floating-point. These three data notations

vary in complexity, dynamic range, and resolution. The Spiffee processor uses a fixed-point

notation for data words. We now briefly review the other two data notations and consider

several issues related to implementing block-floating-point on a cached-FFT processor.

CHAPTER 7. CONCLUSION 145

Background

Fixed-point In fixed-point notation, each datum is represented by a single signed or un-

signed (non-negative) word. As discussed in Sec. 5.3.6, Spiffee uses a signed, 2’s-complement,

fixed-point data word format.

Floating-point In floating-point notation, each datum is represented by two components:

a mantissa and an exponent in the following configuration: mantissa × baseexponent. The

base is fixed, and is typically two or four. Both the mantissa and exponent are generally

signed numbers. Floating-point formats provide greatly increased dynamic range, but sig-

nificantly complicate arithmetic units since normalization steps are required whenever data

are modified.

Block-floating-point Block-floating-point notation is probably the most popular format

for dedicated FFT processors and is similar to floating-point notation except that exponents

are shared among “blocks” of data. For FFT applications, a block of data is typically N

words. Using only one exponent per block dramatically reduces a processor’s complexity

since words are normalized uniformly across all words within a block. The complexity of a

block-floating-point implementation is closer to that of a fixed-point implementation than

that of a floating-point one. However, in the worst case, block-floating-point performs the

same as fixed-point.

Applications to a cached-FFT processor

While the fixed-point format permits a simple and fast design, it also gives the least dynamic

range for its word length. Floating-point and block-floating-point formats provide more

dynamic range, but are more complex.

Unfortunately, block-floating-point is not as well suited to a cached-FFT implementation

as it is to a non-cached implementation. This is because all N words are not accessed as

often (and therefore give opportunity to normalize the data) as they are when using a non-

cached approach. In a cached-FFT, N words are processed once per epoch (which typically

occurs two or three times per FFT), compared to a non-cached approach where N words

are processed each stage (which occurs logr N times per FFT).

CHAPTER 7. CONCLUSION 146

Processor

Processor

Cache

Cache Main Memory

Figure 7.1: System with multiple processor-cache pairs

There are two principal approaches to applying block-floating-point to a cached-FFT:

1. One approach is to use as many exponents as there are groups in an epoch (N/C,

from Eq. 4.8). The exponent for a particular group is updated on each pass. In gen-

eral, multiple-exponent block-floating-point performs better than the standard single-

exponent approach.

2. The second approach is to use one exponent for all N words, and only update the

exponent at the beginning of the FFT, between epochs, and at the end of the FFT.

In general, this approach performs worse than the standard single-exponent method.

7.2.2 Multiple Datapath-Cache Processors

Since the caching architecture greatly reduces traffic to main memory, it is possible to

add additional datapath-cache pairs to reduce computation time. Figure 7.1 shows how a

multiple datapath system is organized. Although bandwidth to the main memory eventually

limits the scalability of this approach, processing speed can be increased several fold through

this technique.

For applications which require extremely fast execution times and more processors than

a single unified main memory allows, techniques such as: using separate read and write

memory buses, sub-dividing the main memory into banks, or using multiple levels of caches,

can allow even more processors to be integrated into a single FFT engine.

CHAPTER 7. CONCLUSION 147

FFT

FFT

Data In Data Out

Figure 7.2: Multi-processor, high-throughput system block diagram

7.2.3 High-Throughput Systems

Most DSP applications are insensitive to modest amounts of latency, and their performance

is typically measured in throughput. By contrast, the performance of general-purpose proces-

sors is strongly effected by the latency of operations (e.g., memory, disk, network accesses).

When calculating a parallelizable algorithm such as the FFT, it is far easier to increase

throughput through the use of parallel processors than it is to decrease execution time.

For systems which calculate FFTs, require high-throughput, and are not latency sensi-

tive (that is, latency on the order of the transform calculation time), the multi-processor

topology shown in Fig. 7.2 may be used. Because FFT processors operate on blocks of N

words at a time, the input data stream is partitioned into blocks of N words, and these

blocks are routed to different processors. After processing, blocks of data are re-assembled

into a high-speed data stream.

7.2.4 Multi-Dimensional Transforms

As FFT processor speeds continue to rise, they become increasingly attractive for use in

multi-dimensional FFT applications. Wosnitza et al. (1998) present a chip containing an

80 µsec 1024-point FFT processor and the logic necessary to perform 1024 × 1024 multi-

dimensional convolutions. Similarly, Spiffee could serve as the core for a multi-dimensional

convolution FFT processor by adding a multiplier for “frequency-domain” multiplications,

and additional control circuits.

CHAPTER 7. CONCLUSION 148

7.2.5 Other-Length Transforms

The first version of Spiffee computes only 1024-point FFTs. As described in Sec. 4.7.4, a

processor can be modified to calculate shorter-length transforms by reducing the number of

passes per group. Modifying Spiffee to perform shorter, power-of-two FFTs is not difficult

as it requires only a change to the chip controller.

Longer-length transforms, on the other hand, present a much more difficult modification,

requiring more WN coefficients and a larger main memory. Additional WN coefficients can

be generated using larger ROMs, a coefficient generator, or a combination of both methods.

Since the main memory occupies approximately one-third of the total chip area, increasing

N by a power-of-two factor significantly increases the die area.

Appendix A

Spiffee1 Data Sheet

149

APPENDIX A. SPIFFEE1 DATA SHEET 150

General features

FFT transforms Forward and inverse, complex

Transform length 1024-point

Datapath width 20 bits + 20 bits

Dataword format fixed-point

Number of transistors 460,000

Technology 0.7 µm CMOS

Lpoly 0.6 µm

Size 5.985 mm × 8.204 mm

Area 49.1 mm2

NMOS Vt 0.68 V

PMOS Vt −0.93 V

Polysilicon layers 1

Metal layers 3

Fabrication date July 1995

Performance at Vdd = 1.1 V

1024-point complex FFT time 330 µsec

Power 9.5 mW

Clock frequency 16 MHz

Performance at Vdd = 2.5 V

1024-point complex FFT time 41 µsec

Power 363 mW

Clock frequency 128 MHz

Performance at Vdd = 3.3 V

1024-point complex FFT time 30 µsec

Power 845 mW

Clock frequency 173 MHz

Table A.1: Key measures of the Spiffee1 FFT processor

Glossary

(3,2) adder. A binary adder with three inputs and two outputs. Also called a “full adder.”

(4,2) adder. A binary adder with four inputs, two outputs, a special input, and a special

output.

6T cell. For Six-transistor cell. A common SRAM cell which contains six transistors.

activity. The fraction of cycles that a node switches.

architecture. The level of abstraction of a processor between the circuit and algorithm

levels.

assert. To set the state of a node by sourcing current into or sinking current from it. See

drive a node.

balanced cached-FFT. A cached-FFT in which there are an equal number of passes in

the groups from all epochs.

(memory) bank. A partition of a memory.

BiCMOS. For Bipolar CMOS. A semiconductor processing technology that can produce

both bipolar and CMOS devices.

Booth encoding. A class of methods to encode the multiplier bits of a multiplier.

butterfly. A convenient computational building block used to calculate FFTs.

cache. A high-speed memory usually placed between a processor and a larger memory.

CAD. For Computer-Aided Design. Software programs or tools used in a design process.

carry-lookahead adder. A type of carry-propagate adder.

151

GLOSSARY 152

carry-propagate adder. A class of adders which fully resolve carry signals along the

entire word width.

charge pump. A circuit which can generate arbitrary voltages.

CLA. For Carry-Lookahead Adder. See carry-lookahead adder.

CMOS. For Complementary Metal Oxide Semiconductor. A silicon-based semiconductor

processing technology.

CRT. For Chinese Remainder Theorem.

datapath. A collection of functional units which process data.

DFT. For Discrete Fourier Transform. A discretized version of the continuous Fourier

transform.

DIF. For Decimation In Frequency. A class of FFT algorithms.

DIT. For Decimation In Time. A class of FFT algorithms.

dot diagram. A notation used to describe a multiplier’s partial-product array.

DRAM. For Dynamic Random Access Memory. A type of memory whose contents persist

only for a short period of time unless refreshed.

drive a node. To source current into or sink current from a node.

driver. A circuit which sources or sinks current.

DSP processor. For Digital Signal Processing processor. A special-purpose processor op-

timized to process signals digitally.

ECL. For Emitter Coupled Logic. A circuit style known for its high speed and high power

dissipation.

epoch. The portion of the cached-FFT algorithm where all N data words are loaded into

a cache, processed, and written back to main memory once.

Ext2sim. A VLSI layout extraction CAD tool.

GLOSSARY 153

fall time. The time required for the voltage of a node to drop from a high value (often

90% of maximum) to a low value (often 10% of maximum).

fan-in. The number of drivers connected to a common node.

fan-out. The number of receivers connected to a common node.

FFT. For Fast Fourier Transform. A class of algorithms which efficiently calculate the

DFT.

fixed-point. A format for describing data in which each datum is represented by a single

word.

flush (a cache). To write the entire cache contents to main memory.

full adder. See (3,2) adder.

functional unit. A loosely-defined term used to describe a block that performs a high-level

function, such as an adder or a memory.

GaAs. For Gallium Arsenide. A semiconductor processing technology that uses Gallium

and Arsenic as semiconducting materials.

general-purpose processor. A non-special-purpose processor (e.g., PowerPC, Sparc, In-

tel x86).

group. The portion of an epoch where a block of data is read from main memory into a

cache, processed, and written back to main memory.

high Vt. MOS transistor thresholds in the range of 0.7 V–0.9 V.

Hspice. A commercial spice simulator by Avant! Corporation. See spice.

IDFT. For Inverse Discrete Fourier Transform. The inverse counterpart to the forward

DFT.

IFFT. For Inverse Fast Fourier Transform. The inverse counterpart to the forward FFT.

in-place. A butterfly is in-place if its inputs and outputs use the same memory locations.

An in-place FFT uses only in-place butterflies.

GLOSSARY 154

Irsim. A switch-level simulation CAD tool.

keeper. A circuit which helps maintain the voltage level of a node.

layout. The physical description of all layers of a VLSI design.

load (a cache). To copy data from main memory to a cache memory.

low Vt. MOS transistor thresholds less than approximately 0.3 V.

Magic. A VLSI layout CAD tool.

metal1. The lowest or first level of metal on a chip.

metal2. The second level of metal on a chip.

metal3. The third level of metal on a chip.

MOS. For Metal Oxide Semiconductor. A type of semiconductor transistor.

MOSIS. A low-cost prototyping and small-volume production service for VLSI circuit

development.

multiplicand. One of the inputs to a multiplying functional unit.

multiplier. One of the inputs to a multiplying functional unit.

NMOS. For N-type Metal Oxide Semiconductor. A type of MOS transistor with “n-type”

diffusions. Also a circuit style or technology which uses only NMOS-type transistors.

n-well. The region of a chip’s substrate with lightly-doped n-type implantation.

pad. A large area of metallization on the periphery of a chip used to connect the chip to

the chip package.

pass. The portion of a group where each word in the cache is read, processed with a

butterfly, and written back to the cache once.

pipeline stall. A halting of execution in a processor’s datapath to allow the resolution of

a conflict.

PMOS. For P-type Metal Oxide Semiconductor. A type of MOS transistor with “p-type”

diffusions. Also a circuit style or technology which uses only PMOS-type transistors.

GLOSSARY 155

poly. See polysilicon.

polysilicon. A layer in a CMOS chip composed of polycrystalline silicon.

precharge. To set the voltage of a node in a dynamic circuit before it is evaluated.

predecode. To partially decode an address.

process. See semiconductor processing technology.

pseudo-code. Computer instructions written in an easy-to-understand format that are

not necessarily from a particular computer language.

p-substrate. The lightly-doped p-type substrate of a chip.

p-well. The region of a chip’s substrate with lightly-doped p-type implantation.

register file. The highest-speed memory in a processor, typically consisting of 16–32 words

with multiple ports.

rise time. The time required for the voltage of a node to rise from a low value (often 10%

of maximum) to a high value (often 90% of maximum).

ROM. For Read Only Memory. A type of memory whose contents are set during manu-

facture and can only be read.

RRI-FFT. For Regular, Radix-r, In-place FFT. A type of FFT algorithm.

scan path. A serially-interfaced testing methodology which enables observability and con-

trollability of nodes inside a chip.

semiconductor processing technology. The collection of all necessary steps and param-

eters for the fabrication of a semiconductor integrated circuit. Sometimes referred to

as simply “process” or “technology.”

sense amplifier. A circuit employed in memories which amplifies small-swing read signals

from the cell array.

(memory) set. A redundant copy of a memory.

SiGe. For Silicon Germanium. A semiconductor processing technology that uses Silicon

Germanium as a semiconducting material.

GLOSSARY 156

SOI. For Silicon On Insulator. A semiconductor processing technology.

span. The maximum distance (measured in memory locations) between any two butterfly

legs.

spice. A CAD circuit simulator.

Spiffee. A single-chip, 1024-point FFT processor design. The name is loosely derived from:

Stanford Low-Power, High-Performance, FFT Engine.

Spiffee1. The first fabricated Spiffee processor.

SRAM. For Static Random Access Memory. A type of memory whose contents are pre-

served as long as the supply voltage is maintained.

stage. The part of a non-cached-FFT where all N memory locations are read, processed

by a butterfly, and written back once.

stride. The distance (measured in memory locations) between adjacent “legs” or “spokes”

of a butterfly.

technology. See semiconductor processing technology.

transmission gate. A circuit block consisting of an NMOS and a PMOS transistor, where

the sources and drains of each transistor are connected to each other.

twiddle factor. A multiplicative constant used between stages of some FFTs.

ULP. For Ultra Low Power. A semiconductor processing technology.

Verilog. A hardware description language.

VLIW. For Very Long Instruction Word. A computer architecture utilizing very wide

instructions.

VLSI. For Very Large Scale Integration. A loosely-defined term referring to integrated

circuits with minimum feature sizes less than approximately 1.0 µm.

Bibliography

Amrutur, B. S. and M. A. Horowitz. “A Replica Technique for Wordline and Sense Control

in Low-Power SRAM’s.” IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1208–

1219, August 1998.

Antoniadis, D. “SOI CMOS as a Mainstream Low-Power Technology: A Critical Assess-

ment.” In International Symposium on Low Power Electronics and Design, pp. 295–300,

August 1997.

Assaderaghi, F., S. Parke, P. K. Ko, and C. Hu. “A Novel Silicon-On-Insulator (SOI) MOS-

FET for Ultra Low Voltage Operation.” In IEEE Symposium on Low Power Electronics,

volume 1, pp. 58–59, October 1994.

Athas, W., N. Tzartzanis, L. Svensson, L. Peterson, H. Li, X. Jiang, P. Wang, and W.-

C. Liu. “AC-1: A Clock-powered Microprocessor.” In International Symposium on Low

Power Electronics and Design, pp. 328–333, August 1997.

Athas, W. C., L. J. Svensson, J. G. Koller, N. Tzartzanis, and E. Y.-C. Chou. “Low-Power

Digital Systems Based on Adiabatic-Switching Principles.” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 398–407, December 1994.

Baas, B. M. “A Pipelined Memory System For an Interleaved Processor.” Technical Report

NSF-GF-1992-1, STARLab, EE Department, Stanford University, June 1992.

Baas, B. M. “An Energy-Efficient FFT Processor Architecture.” Technical Report NGT-

70340-1994-1, STARLab, EE Department, Stanford University, January 1994.

Baas, B. M. “An Energy-Efficient Single-Chip FFT Processor.” In Symposium on VLSI

Circuits, pp. 164–165, June 1996.

157

BIBLIOGRAPHY 158

Baas, B. M. “A 9.5 mW 330µsec 1024-point FFT Processor.” In IEEE Custom Integrated

Circuits Conference, pp. 127–130, May 1998.

Baas, B. M. “A Low-Power, High-Performance, 1024-point FFT Processor.” IEEE Journal

of Solid-State Circuits, March 1999. In press.

Bailey, D. H. “FFTs in External or Hierarchical Memory.” The Journal of Supercomputing,

vol. 4, no. 1, pp. 23–35, March 1990.

Bakoglu, H. B. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,

Reading, MA, 1990.

Barke, E. “Line-to-Ground Capacitance Calculation for VLSI: A Comparison.” IEEE

Transactions on Computer Aided Design, vol. 7, no. 2, pp. 295–298, February 1988.

Bewick, G. W. Fast Multiplication: Algorithms and Implementation. PhD thesis, Stanford

University, Stanford, CA, February 1994.

Bidet, E., D. Castelain, C. Joanblanq, and P. Senn. “A Fast Single-Chip Implementation

of 8192 Complex Point FFT.” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 300–

305, March 1995.

Bier, J. “Processors for DSP—The Options Multiply.” October 1997. Lecture given to

EE380 course at Stanford University.

Blahut, R. E. Fast Algorithms for Digital Signal Processing. Addison-Wesley, Reading,

MA, 1985.

Bracewell, R. N. The Fourier Transform and Its Applications. McGraw-Hill, New York,

NY, second edition, 1986.

Brenner, N. M. “Fast Fourier Transform of Externally Stored Data.” In IEEE Transactions

on Audio and Electroacoustics, volume AU-17, pp. 128–132, June 1969.

Brigham, E. O. The Fast Fourier Transform and Its Applications. Prentice-Hall, Engle-

wood Cliffs, NJ, 1988.

Burr, J. B. “Stanford Ultra Low Power CMOS.” In Symposium Record, Hot Chips V,

pp. 7.4.1–7.4.12, August 1993.

BIBLIOGRAPHY 159

Burr, J. B., Z. Chen, and B. M. Baas. “Stanford Ultra-Low-Power CMOS Technology

and Applications.” In Low-power HF Microelectronics, a Unified Approach, chapter 3,

pp. 85–138. The Institution of Electrical Engineers, London, UK, 1996.

Burr, J. B. and A. M. Peterson. “Energy considerations in multichip-module based multi-

processors.” In IEEE International Conference on Computer Design, pp. 593–600, 1991.

Burr, J. B. and A. M. Peterson. “Ultra low power CMOS technology.” In NASA VLSI

Design Symposium, pp. 4.2.1–4.2.13, 1991.

Burr, J. B. and J. Shott. “A 200mV Self-Testing Encoder/Decoder using Stanford Ultra-

Low-Power CMOS.” In IEEE International Solid-State Circuits Conference, volume 37,

pp. 84–85, 316, 1994.

Burrus, C. S. “Index Mappings for Multidimensional Formulation of the DFT and Con-

volution.” In IEEE Transactions on Acoustics, Speech, and Signal Processing, volume

ASSP-25, pp. 239–242, June 1977.

Burrus, C. S. and T. W. Parks. DFT/FFT and Convolution Algorithms. John Wiley &

Sons, New York, NY, 1985.

Carlson, D. A. “Using Local Memory to Boost the Performance of FFT Algorithms on

the Cray-2 Supercomputer.” The Journal of Supercomputing, vol. 4, no. 4, pp. 345–356,

January 1991.

Chandrakasan, A., A. Burstein, and R. Brodersen. “Low-Power chipset for a Portable

Multimedia I/O Terminal.” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1415–

1428, December 1994.

Chandrakasan, A., S. Sheng, and R. Brodersen. “Low-Power CMOS Digital Design.” IEEE

Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–483, April 1992.

Chandrakasan, A. P. and R. W. Brodersen. “Minimizing Power Consumption in Digital

CMOS Circuits.” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, April 1995.

Cooley, J. W., P. A. W. Lewis, and P. D. Welch. “Historical Notes on the Fast Fourier

Tranform.” In IEEE Trans. on Audio and Electroacoustics, volume AU-15, pp. 76–79,

June 1967.

BIBLIOGRAPHY 160

Cooley, J. W. and J. W. Tukey. “An Algorithm for the Machine Calculation of Complex

Fourier Series.” In Math. of Comput., volume 19, pp. 297–301, April 1965.

Danielson, G. C. and C. Lanczos. “Some Improvements in Practical Fourier Analysis and

Their Application to X-ray Scattering From Liquids.” In J. Franklin Inst., volume 233,

pp. 365–380,435–452, April 1942.

DeFatta, D. J., J. G. Lucas, and W. S. Hodgkiss. Digital Signal Processing: A System

Design Approach. John Wiley & Sons, New York, NY, 1988.

Gannon, D. and W. Jalby. “The Influence of Memory Hierarchy on Algorithm Organiza-

tion: Programming FFTs on a Vector Multiprocessor.” In Jamieson, L., D. Gannon, and

R. Douglass, editors, The Characteristics of Parallel Algorithms, chapter 11, pp. 277–301.

MIT Press, Cambridge, MA, 1987.

Gauss, C. F. “Nachlass: Theoria Interpolationis Methodo Nova Tractata.” In Carl

Friedrich Gauss, Werke, Band 3, pp. 265–303, 1866.

GEC Plessey Semiconductors. PDSP16510A MA Stand Alone FFT Processor. Wiltshire,

United Kingdom, March 1993.

Gentleman, W. M. and G. Sande. “Fast Fourier Transforms—For Fun and Profit.” In

AFIPS Conference Proceedings, volume 29, pp. 563–578, November 1966.

Gold, B. Private communication with author, 13 May 1997.

Gordon, B. M. and T. H. Meng. “A 1.2mW Video-Rate 2-D Color Subband Decoder.”

IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1510–1516, December 1995.

Hall, J. S. “An Electroid Switching Model for Reversible Computer Architectures.” In

Proceedings of ICCI ’92, 4th International Conference on Computing and Information,

1992.

He, S. and M. Torkelson. “Design and Implementation of a 1024-point Pipeline FFT

Processor.” In IEEE Custom Integrated Circuits Conference, pp. 131–134, May 1998.

Heideman, M. T., D. H. Johnson, and C. S. Burrus. “Gauss and the History of the Fast

Fourier Transform.” In IEEE ASSP Magazine, pp. 14–21, October 1984.

BIBLIOGRAPHY 161

Hennessy, J. L. and D. A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann, San Francisco, CA, second edition, 1996.

Holmann, E. “A VLIW Processor for Multimedia Applications.” In Hot Chips 8 Sympo-

sium, pp. 193–202, August 1996.

Horowitz, M., T. Indermaur, and R. Gonzalez. “Low-Power Digital Design.” In IEEE

Symposium on Low Power Electronics, volume 1, pp. 8–11, October 1994.

Hunt, B. W., K. S. Stevens, B. W. Suter, and D. S. Gelosh. “A Single Chip Low Power

Asynchronous Implementation of an FFT Algorithm for Space Applications.” In Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 216–

223, April 1998.

Ida, J., M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino. “Re-

duction of Wiring Capacitance with New Low Dielectric SiOF Interlayer Film and High

Speed / Low Power Sub-Half Micron CMOS.” In Symposium on VLSI Technology, June

1994.

Itoh, K., A. R. Fridi, A. Bellaouar, and M. I. Elmasry. “A Deep Sub-V, Single Power-Supply

SRAM Cell with Multi-Vt, Boosted Storage Node and Dynamic Load.” In Symposium on

VLSI Circuits, June 1996.

Itoh, K., K. Sasaki, and Y. Nakagome. “Trends in Low-Power RAM Circuit Technologies.”

Proceedings of the IEEE, vol. 83, no. 4, pp. 524–543, April 1995.

Jackson, L. B. Digital Filters and Signal Processing. Kluwer Academic, Boston, MA, 1986.

Lam, M. S., E. E. Rothberg, and M. E. Wolf. “The Cache Performance and Optimiza-

tions of Blocked Algorithms.” In International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 63–74, April 1991.

LSI Logic Corporation. Implementing Fast Fourier Transform Systems with the L64280/81

Chip Set. Milpitas, CA, April 1990.

LSI Logic Corporation. L64280 Complex FFT Processor (FFTP). Milpitas, CA, April

1990.

BIBLIOGRAPHY 162

LSI Logic Corporation. L64281 FFT Video Shift Register (FFTSR). Milpitas, CA, April

1990.

Magar, S., S. Shen, G. Luikuo, M. Fleming, and R. Aguilar. “An Application Specific DSP

Chip Set for 100 MHz Data Rates.” In International Conference on Acoustics, Speech, and

Signal Processing, volume 4, pp. 1989–1992, April 1988.

Matsui, M. and J. B. Burr. “A Low-Voltage 32 × 32-Bit Multiplier in Dynamic Differential

Logic.” In IEEE Symposium on Low Power Electronics, pp. 34–35, October 1995.

Matsui, M., H. Hara, Y. Uetani, L.-S. Kim, T. Nagamatsu, Y. Watanabe, A. Chiba,

K. Matsuda, and T. Sakurai. “A 200 MHz 13 mm2 2-D DCT Macrocell Using Sense-

Amplifying Pipeline Flip-Flop Scheme.” IEEE Journal of Solid-State Circuits, vol. 29,

no. 12, pp. 1482–1490, December 1994.

Mehta, H., R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. “Techniques for Low

Energy Software.” In International Symposium on Low Power Electronics and Design,

pp. 72–75, August 1997.

Meng, T. H., B. M. Gordon, E. K. Tsern, and A. C. Hung. “Portable Video-on-Demand

in Wireless Communication.” Proceedings of the IEEE, vol. 83, no. 4, pp. 659–680, April

1995.

Mizuno, H. and T. Nagano. “Driving source-line cell architecture for sub-1-V high-speed

low-power applications.” IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 552–557,

April 1996.

Nandakumar, M., A. Chatterjee, M. Rodder, and I.-C. Chen. “A Device Design Study of

0.25µm Gate Length CMOS for 1V Low Power Applications.” In IEEE Symposium on

Low Power Electronics, pp. 80–82, October 1995.

O’Brien, J., J. Mather, and B. Holland. “A 200 MIPS Single-Chip 1K FFT Processor.” In

IEEE International Solid-State Circuits Conference, volume 36, pp. 166–167, 327, 1989.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall,

Englewood Cliffs, NJ, 1989.

Rabiner, L. R. Private communication with author, 13 May 1997.

BIBLIOGRAPHY 163

Rabiner, L. R. and B. Gold. Theory and Application of Digital Signal Processing. Prentice-

Hall, Englewood Cliffs, NJ, 1975.

Richards, M. A. “On Hardware Implementation of the Split-Radix FFT.” IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1575–1581, October

1988.

Roberts, R. A. and C. T. Mullis. Digital Signal Processing. Addison-Wesley, Reading,

MA, 1987.

Ruetz, P. A. and M. M. Cai. “A Real Time FFT Chip Set: Architectural Issues.” In

International Conference on Pattern Recognition, volume 2, pp. 385–388, June 1990.

Runge, C. In Zeit. für Math. und Physik, volume 48, p. 443, 1903.

Runge, C. In Zeit. für Math. und Physik, volume 53, p. 117, 1905.

Runge, C. and H. König. “Die Grundlehren der Mathematischen Wissenschafter.” In

Vorlesungen über Numerisches Rechnen, volume 11, Berlin, 1924. Julius Springer.

Santoro, M. R. Design and Clocking of VLSI Multipliers. PhD thesis, Stanford University,

Stanford, CA, October 1989.

Sarmiento, R., F. Tobajas, V. de Armas, R. Esper-Cháın, J. F. López, J. Montiel-Nelson,

and A. Núñez. “A CORDIC Processor for FFT Computation and Its Implementation

Using Gallium Arsenide Technology.” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 6, no. 1, pp. 18–30, March 1998.

Sharp Electronics Corporation. LH9124 Digital Signal Processor User’s Guide. Camas,

WA, 1992.

Singleton, R. C. “A Method for Computing the Fast Fourier Transform with Auxiliary

Memory and Limited High-Speed Storage.” In IEEE Transactions on Audio and Electroa-

coustics, volume AU-15, pp. 91–98, June 1967.

Singleton, R. C. “An Algorithm for Computing the Mixed Radix Fast Fourier Transform.”

In IEEE Transactions on Audio and Electroacoustics, volume AU-17, pp. 93–103, June

1969.

BIBLIOGRAPHY 164

Smit, J. and J. A. Huisken. “On the energy complexity of the FFT.” In Piquet, C. and

W. Nebel, editors, PATMOS ’95, pp. 119–132, Postfach 2541, 26015 Oldenburg, 1995.

Bibliotheks- und Informationssystem der Universität Oldenburg.

Solomon, P. M. and D. J. Frank. “The Case for Reversible Computation.” In International

Workshop on Low Power Design, pp. 93–98, April 1994.

Sorensen, H. V., M. T. Heideman, and C. S. Burrus. “On Computing the Split-Radix

FFT.” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-34,

no. 1, pp. 152–156, February 1986.

Stevens, K. S. and B. W. Suter. “A Mathematical Approach to a Low Power FFT Archi-

tecture.” In IEEE International Symposium on Circuits and Systems, volume 2, pp. 21–24,

June 1998.

Strum, R. D. and D. E. Kirk. Discrete Systems and Digital Signal Processing. Addison-

Wesley, Reading, MA, 1989.

Su, C. L., C. Y. Tsui, and A. M. Despain. “Low power architecture design and compilation

techniques for high-performance processors.” In IEEE COMPCON, pp. 489–498, February

1994.

Sunada, G., J. Jin, M. Berzins, and T. Chen. “COBRA: An 1.2 Million Transistor Ex-

pandable Column FFT Chip.” In IEEE International Conference on Computer Design,

pp. 546–550, October 1994.

Tiwari, V., S. Malik, and A. Wolfe. “Compilation Techniques for Low Energy: An

Overview.” In IEEE Symposium on Low Power Electronics, volume 1, pp. 38–39, Oc-

tober 1994.

Tsern, E. K. and T. H. Meng. “A Low-Power Video-Rate Pyramid VQ Decoder.” In IEEE

International Solid-State Circuits Conference, volume 39, pp. 162–3, 436, 1996.

Tyler, G. L., B. M. Baas, F. Bauregger, S. Mitelman, I. Linscott, E. Post, O. Shana’a,

and J. Twicken. “Radioscience Receiver Development for Low Power, Low Mass Up-

link Missions.” In JPL’s Planetary Instrumentation Definition and Development Program

Workshop, June 1997.

BIBLIOGRAPHY 165

Van Loan, C. Computational Frameworks for the Fast Fourier Transform. Society for

Industrial and Applied Mathematics, Philaelphia, PA, 1992.

Vetterli, M. and P. Duhamel. “Split-Radix Algorithms for Length-pm DFT’s.” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 1, pp. 57–64, January

1989.

Vieri, C., I. Yang, A. Chandrakasan, and D. Antoniadis. “SOIAS: Dynamically Variable

Threshold SOI with Active Substrate.” In IEEE Symposium on Low Power Electronics,

pp. 86–87, October 1995.

Waser, S. and M. Flynn. “Topics in Arithmetic for Digital Systems Designers.” February

1990. Class notes for EE382 course at Stanford University.

Weste, N. and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, Read-

ing, MA, 1985.

Wosnitza, M., M. Cavadini, M. Thaler, and G. Tröster. “A High Precision 1024-point FFT

Processor for 2D Convolution.” In IEEE International Solid-State Circuits Conference,

volume 41, pp. 118–119, 424, 1998.

Yamauchi, H., H. Akamatsu, and T. Fujita. “An Asymptotically Zero Power Charge-

Recycling Bus Architecture for Battery-Operated Ultrahigh Data Rate ULSI’s.” IEEE

Journal of Solid-State Circuits, vol. 30, no. 4, pp. 423–431, April 1995.

Yamauchi, H., T. Iwata, H. Akamatsu, and A. Matsuzawa. “A 0.5V/100MHz Over-Vcc

Grounded Data Storage (OVGS) SRAM Cell Architecture with Boosted Bit-line and Offset

Source Over-Driving Scheme.” In International Symposium on Low Power Electronics and

Design, pp. 49–54, August 1996.

Yamauchi, H., T. Iwata, H. Akamatsu, and A. Matsuzawa. “A 0.5V Single Power Supply

Operated High-Speed Boosted and Offset-Grounded Data Storage (BOGS) SRAM Cell

Architecture.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5,

no. 4, pp. 377–387, December 1997.

Yang, I. Y., C. Vieri, and D. Antoniadis. “Back-gated CMOS on SOIAS for dynamic

threshold voltage control.” IEEE Transactions on Electron Devices, vol. 44, no. 5, pp. 822–

831, May 1997.

Index

adder, 115–117

carry-lookahead, 116–117

carry-propagate, 107, 110–111, 116–

117

full, 116

ripple-carry, 116

architecture

array, 88

cached-memory, 89

dual-memory, 87

pipeline, 88

single-memory, 87

block-floating-point, 145–146

blocking, 54

Booth encoding, 107–112

butterfly

definition, 15

in-place, 56

radix-2 DIF, 22

radix-2 DIT, 15

radix-4 DIT, 23

split-radix, 30

cached-FFT, 50–82, 143

balanced, 78–79

definition, 53

general description, 69–76

implementing, 76–78

overview, 51–53

Spiffee, 85–86

variations, 80

carry-lookahead adder, 116–117

DFT, 6–8

definition, 6

inverse, 7

DIF—Decimation In Frequency, 21, 85

DIT—Decimation In Time, 13, 20, 85

epoch definition, 52

FFT, 8–31

cached, 50–82

common-factor, 19–25

continuous, 4–6

higher-radix, 24–25

history of, 8–9

mixed-radix, 20

prime-factor, 25–29

radix-r, 20, 50

radix-2 DIF, 21–22

radix-2 DIT, 20–21

radix-4, 22–24

RRI, 59–64, 66–69

simple derivation of, 9–13

split-radix, 29

166

INDEX 167

WFTA, 29

fixed-point, 93, 145

flip-flop, 120

floating-point, 145

Fourier transform integral, 4

full adder, 109, 116

group definition, 52

hierarchical-bitline

ROM, 113–114

SRAM, 98–101

high-radix FFTs, 24–25

in-place definition, 56

mixed-radix definition, 20

multiplier, 106–112

pass definition, 52

pipelining, 38–39

power

constant-current, 36–37

leakage, 34–35

reduction-techniques, 37–48

short-circuit, 34

switching, 35–36

prime-factor FFT, 25–29

QDT tester, 85, 125

radix-r, 20, 56

definition, 20

radix-2 DIF FFTs, 21–22

radix-2 DIT FFTs, 20–21

radix-4 FFTs, 22–24

reversible circuits, 45–47

ripple-carry adder, 116

ROM, 113–115

RRI-FFT, 59–64

definition, 59

existence, 59–60

general description, 66–69

scan path, 123

SOI, 44–45

span definition, 57

Spiffee, 83–126

adder, 115–117

block diagram, 94

cached-FFT, 85–86

caches, 103–106

clocking, 120–123

controller, 121–122

driver, 122–123

flip-flop, 120

oscillator, 121

controller, 86, 119

memory, 119

processor, 119

datapath, 92–93

design approach, 124–125

fixed-point format, 93

high-throughput system, 147

low-Vt versions, 141–142

main memory, 95–103

multi-dimensional FFT systems, 147

multiple datapath-cache system, 146

multipliers, 106–112

other transform lengths, 148

INDEX 168

pipeline, 90–92

radix, 85

ROMs, 113–115

testing, 123

Spiffee1, 127–139

E × T , 132–134

Vt values, 128

clock frequency, 131

comparisons, 135–139

data sheet, 149–150

die photo, 129

energy consumption, 132

power dissipation, 134

sample input/output, 134–135

split-radix, 29

SRAM, 95–103

stage definition, 56

stride definition, 57

twiddle factor, 10

ULP CMOS, 43–44, 141

Revision History

2004/09/29

• page xvii: Corrected WN equation

• page 73: Removed extra bk bits in table

• page 82: Fixed repeated-word typo

169

