
FPGA and ASIC Technology
Comparison - 1

© 2009 Xilinx, Inc. All Rights Reserved

Synthesis Options

Welcome

If you are new to FPGA design, this module

will help you synthesize your design

properly

These synthesis techniques promote fast

and efficient FPGA design development

Tips for all major FPGA synthesis tools are

included in this module

Identify synthesis tool options that can be

used to increase performance and/or reduce

your design size

Describe an approach to using your

synthesis tool to obtain higher performance

After completing this module, you will
able to:

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 4

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 4

© 2009 Xilinx, Inc. All Rights Reserved

Timing Closure

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 5

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 5

© 2009 Xilinx, Inc. All Rights Reserved

Breakthrough Performance

 Three steps to achieve breakthrough performance

1. Utilize embedded (dedicated) resources

• Performance by construction

• DSP slice, block RAM, ISERDES, OSERDES, EMAC, and MGT

2. Write code for performance

• Use synchronous design methodology

• Ensure the code is written optimally for critical paths

• Pipeline

3. Drive your synthesis and Place & Route tools

• Try different synthesis optimization techniques

• Add critical timing constraints in synthesis

• Preserve hierarchy

• Apply full and correct constraints

• Use High effort

Performance Meter

Virtex™-6 FPGA

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 6

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 6

© 2009 Xilinx, Inc. All Rights Reserved

Use Dedicated Hardware

XtremeDSP™ Solution
Slice

Block RAM/FIFO

 Dedicated hardware block timing is correct by

construction

Not dependent on programmable routing

 Offers as much as 3x the performance of soft

implementations

 Examples

FIFO at 600 MHz

DSP slices at 600 MHz

Block RAM at 600 MHz

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 7

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 7

© 2009 Xilinx, Inc. All Rights Reserved

Simple Coding Techniques

Use pipeline stages—more bandwidth

Use synchronous reset—better system control

Use Finite State Machine (FSM) optimizations

Use inferable resources

Multiplexer

Shift Register LUT (SRL)

Block RAM, LUT RAM

Cascade DSP

Think about the levels of logic required for the logic you are building

Be aware of the circuit structures being inferred

Pay attention to the expected combinatorial complexity

See the Synthesis and Simulation Design Guide:
Help Software Manuals Synthesis and Simulation Design Guide

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 8

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 8

© 2009 Xilinx, Inc. All Rights Reserved

Synthesis Options

There are many synthesis options that can help you obtain your

performance and area objectives

Timing-driven synthesis

FSM extraction

Retiming

Register duplication

Hierarchy management

Resource sharing

Physical optimization

Note that these options are included with Synplify, Precision, and XST

synthesis tools

The notes include instructions for each tool

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 9

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 9

© 2009 Xilinx, Inc. All Rights Reserved

Synthesis Guidelines

Use timing constraints to drive the optimization of your design

Define accurate individual clock constraints

Create clock constraints in the appropriate style

• Specify related clocks using related constraints

• Specify unrelated clocks using independent constraints

– Use different clock groups in Synplicity

Based on your performance objectives, the tools will try several algorithms to

attempt to meet performance while keeping the amount of resources in mind

Performance objectives are provided to the synthesis tool via timing

constraints

Do not over-constrain your design

• This will disable your synthesis tool from helping you

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 10

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 10

© 2009 Xilinx, Inc. All Rights Reserved

Timing Constraints

Apply proper timing constraints to the synthesis tool, but do not pass them
to the implementation tools

Synthesis constraints will also be passed (by default) on to the Xilinx
implementation tools via a Netlist Constraints File (NCF) when using Synplify

• This should be turned off

Synthesis constraints can be passed (not by default) on to the Xilinx
implementation tools via the Xilinx NGC file when using XST

Synplify

Specify constraints in the SDC file or use the SCOPE GUI

XST

Specify constraints in the XCF file

• See the Synthesis Constraints section of Chapter 3 in the Constraints Guide

– Software Manuals: Help Software Manuals Constraints Guide

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 11

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 11

© 2009 Xilinx, Inc. All Rights Reserved

Timing Constraint Example

Use constraints

Synplify stops optimizing when the

 constraints are met

Over-constraining clocks can yield

poorer results

Over-constraining means specifying

a constraint that is tighter than what

 your system needs

Using the global frequency field can deteriorate results

(*) Synplicity’s data

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 12

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 12

© 2009 Xilinx, Inc. All Rights Reserved

LUT LUT LUT

LUT LUT

LUT

LUT

LUT

LUT

LUT

LUT

Impact of Synthesis Constraints

Non-timing-constrained designs can be optimized for area rather than

performance

Non-Timing Driven
Timing Driven

(Bigger but Faster!!!)

Total LUTs: 5

Clock Freq: 423.7 MHz

Total LUTs: 6

Clock Freq: 591.7 MHz (+ 40%)

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 13

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 13

© 2009 Xilinx, Inc. All Rights Reserved

Place & Route Guidelines

Timing constraints

It is essential to use accurate

constraints for the implementation

tools

Implementation tool options

The implementation tools have many

options that can affect design

performance

Area Constraints

Especially with the use of the PlanAhead™ tool

Using the correct Place &
Route options can have a
dramatic impact on design

performance

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 14

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 14

© 2009 Xilinx, Inc. All Rights Reserved

Impact of Constraints in Tools

Example Reed-Solomon design

No constraints;

Standard effort

No constraints

in synthesis;

Place & Route

with High effort

and constraint

Constraints in

synthesis

and Place &

Route (High

effort)

Constraints in

synthesis and Place

& Route; retiming

in synthesis;

High effort in PAR

P
er

fo
rm

an
ce

1.0
1.4

1.6

2.1

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 15

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 15

© 2009 Xilinx, Inc. All Rights Reserved

FSM Extraction

Finite State Machine (FSM) extraction optimizes your state machine by

re-encoding and optimizing your design based on the number of states and

inputs

By default, the tools will use FSM extraction

Can be enabled or disabled globally, or using attributes in your HDL code

Safe state machines

By default, the synthesis tools will remove all decoding for illegal states (when

FSM extraction is enabled)

• Even if you include VHDL “when others” or Verilog “default” cases

Must be turned ON to use “safe” FSM implementation

• See Notes for more information

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 16

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 16

© 2009 Xilinx, Inc. All Rights Reserved

Retiming

Retiming: The synthesis tool automatically tries to move register stages to

balance combinatorial delay on each side of the registers

D Q D Q D Q

Before Retiming

After Retiming

D Q D Q D Q

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 17

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 17

© 2009 Xilinx, Inc. All Rights Reserved

Register Duplication

Register duplication is used to reduce fanout on registers (to improve

delays)

Registered output signals that are used internally

Xilinx recommends manual register duplication

Not all high fanout nets will give you a timing problem

Most synthesis vendors create signals <signal_name>_rep0, _rep1, etc.

• Implementation tools pack logic with related names into the same slice, which can

prohibit a register from being moved closer to its destination

When manually duplicating registers, do not use a number at the end

• Example: <signal_name>_0dup, <signal_name>_1dup

Use synthesis options to prevent duplicate registers from being re-merged

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 18

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 18

© 2009 Xilinx, Inc. All Rights Reserved

Hierarchy Management

The basic settings are

Flatten the design: Allows total combinatorial optimization across all

boundaries (XST default)

Maintain hierarchy: Preserves hierarchy without allowing optimization of

combinatorial logic across boundaries (Xilinx recommended)

If you have followed the synchronous design guidelines, use the setting

-maintain hierarchy

If you have not followed the synchronous design guidelines, use the setting

-flatten the design

Your synthesis tool may have additional settings

Refer to your synthesis documentation for details on these settings

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 19

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 19

© 2009 Xilinx, Inc. All Rights Reserved

Hierarchy Preservation Benefits

Easily locate problems in the code based on the hierarchical instance

names contained within static timing analysis reports

Enables floorplanning and incremental design flow

The primary advantage of flattening is to optimize combinatorial logic

across hierarchical boundaries

If the outputs of leaf-level blocks are registered, there is generally no need to

flatten

• However, preserving hierarchy can limit register retiming (balancing) and register

duplication

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 20

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 20

© 2009 Xilinx, Inc. All Rights Reserved

Resource Sharing

Resource sharing allows arithmetic operator resources to be shared with

other functions

By default, this property is set to True with XST

If your design has a significant amount of math functions, it can decrease

the size of your design

Resource sharing is the opposite of logic replication

This option can increase the net delays for those nets whose fanout increases

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 21

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 21

© 2009 Xilinx, Inc. All Rights Reserved

Schematic Viewers

Allows you to view synthesis results graphically

Check the number of logic levels between flip-flops

Locate net and instance names quickly

View the design as generic RTL or technology-specific components

Works best when hierarchy has been preserved during synthesis

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 22

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 22

© 2009 Xilinx, Inc. All Rights Reserved

Cross-Probing

From the Timing Analyzer, click a reported worst-case path and that path

will be highlighted in the synthesis schematic viewer

Cross-probe to the code

• Review the code to determine whether or not it can be rewritten to improve

performance

• Apply timing constraints in your synthesis tool to optimize this path better

You may need to set some environment variables for this to work

• For more information, see Application Note XAPP406: Cross-Probing to Synplify

and Exemplar

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 23

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 23

© 2009 Xilinx, Inc. All Rights Reserved

Physical Optimization

Synopsys Synplify Premier or Mentor Precision Physical software (add-on

tools)

Based on the critical paths in the design, the tools will attempt to optimize

and physically locate the associated logic closely together to minimize the

routing delays

Essentially, this is a way to provide critical path information to the synthesis

tool so that it can attempt to optimize those paths further

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 24

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 24

© 2009 Xilinx, Inc. All Rights Reserved

Summary

Your HDL coding style can affect synthesis results

Infer resources whenever possible

Most resources are inferable, either directly or with an attribute and the

appropriate coding style

If you cannot infer the resource you need, instantiate the necessary

component with the aid of the Core Generator

Take advantage of the synthesis options provided to help you meet your

timing objectives

Use synchronous design techniques and timing-driven synthesis to

achieve higher performance

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 25

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 25

© 2009 Xilinx, Inc. All Rights Reserved

Where Can I Learn More?

Software Manuals
Start Xilinx ISE Design Suite 12.1 ISE Design Tools Documentation
 Software Manuals

This includes the Synthesis & Simulation Design Guide

• This guide has example inferences of many architectural resources

XST User Guide

• HDL language constructs, coding recommendations, and synthesis options

Constraints Guide

• All Synthesis and Implementation constraints

Xilinx Training
www.xilinx.com/training

• Xilinx tools and architecture courses

• Hardware description language courses

• Basic HDL Coding Techniques, Spartan-6 and Virtex-6 Coding Techniques and other
Free training videos!

http://www.xilinx.com/training

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 26

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 26

© 2009 Xilinx, Inc. All Rights Reserved

Recommended REL Modules

Additional FREE training videos are available for you to improve your HDL

coding style

Basic HDL Coding Techniques, part 1 and 2

• Design guidelines (good design practices)

• Best ways to pipeline your design and Finite State Machine design

Virtex-6 and Spartan-6 HDL Coding Techniques, part 1 and 2

• Coding for hardware resources

– SRL, multiplexers, carry logic, and GSR

• Coding to reduce your design size and improve your speed

– Managing your control signals (sets, resets, clocks, clock enables)

– Block RAM and DSP slice

XST Synthesis Options

• Detailed instruction on how to use XST for synthesis

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 27

© 2007 Xilinx, Inc. All Rights Reserved FPGA and ASIC Technology
Comparison - 27

© 2009 Xilinx, Inc. All Rights Reserved

Xilinx is disclosing this Document and Intellectual Propery (hereinafter “the Design”) to you for use in the development of designs to operate on, or interface

with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or

transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

consent of Xilinx. Any unauthorized use of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications

regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any

rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make

changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or

to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or

assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH

YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE,

WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED,

OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,

INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION WITH

YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES

PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE

ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU

WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-safe controls, such as

in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or weapons systems (“High-Risk

Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk Applications. You represent that use of the

Design in such High-Risk Applications is fully at your risk.

© 2009 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Trademark Information

