
WEIGHTED K NEAREST NEIGHBOR

Siddharth Deokar
CS 8751
04/20/2009
deoka001@d.umn.edu

Outline

¨ Background
¨ Simple KNN
¨ KNN by Backward Elimination
¨ Gradient Descent & Cross Validation¨ Gradient Descent & Cross Validation

� Instance Weighted KNN
� Attribute Weighted KNN

¨ Results
¨ Implementation
¨ DIET

Background

¨ K Nearest Neighbor
� Lazy Learning Algorithm

Defer the decision to generalize beyond the training
examples till a new query is encountered

� Whenever we have a new point to classify, we find its K� Whenever we have a new point to classify, we find its K
nearest neighbors from the training data.

� The distance is calculated using one of the following
measures
n Euclidean Distance
n Minkowski Distance
n Mahalanobis Distance

Simple KNN Algorithm

¨ For each training example <x,f(x)>, add the
example to the list of training_examples.

¨ Given a query instance xq to be classified,¨ Given a query instance xq to be classified,
� Let x1,x2….xk denote the k instances from

training_examples that are nearest to xq .
� Return the class that represents the maximum of the k

instances.

KNN Example

xqxq

If K = 5, then in this case query instance xq will be classified as
negative since three of its nearest neighbors are classified as
negative.

Curse of Dimensionality

¨ Distance usually relates to all the attributes and assumes all
of them have the same effects on distance

¨ The similarity metrics do not consider the relation of
attributes which result in inaccurate distance and then impact
on classification precision. Wrong classification due to
presence of many irrelevant attributes is often termed as thepresence of many irrelevant attributes is often termed as the
curse of dimensionality

¨ For example: Each instance is described by 20 attributes out
of which only 2 are relevant in determining the classification
of the target function. In this case, instances that have
identical values for the 2 relevant attributes may
nevertheless be distant from one another in the 20
dimensional instance space.

Weighted K Nearest Neighbor

¨ Approach 1
� Associate weights with the attributes
� Assign weights according to the relevance of attributes

n Assign random weights
n Calculate the classification error

Adjust the weights according to the errorn Adjust the weights according to the error
n Repeat till acceptable level of accuracy is reached

¨ Approach 2
� Backward Elimination
� Starts with the full set of features and greedily removes the

one that most improves performance, or degrades
performance slightly

Weighted K Nearest Neighbor

¨ Approach 3 (Instance Weighted)
� Gradient Descent
� Assign random weights to all the training instances
� Train the weights using Cross Validation� Train the weights using Cross Validation

¨ Approach 4 (Attribute Weighted)
� Gradient Descent
� Assign random weights to all the attributes
� Train the weights using Cross Validation

Definitions

¨ Accuracy
�Accuracy = (# of correctly classified examples / #

of examples) X 100

¨ Standard Euclidean Distance
�d(xi ,xJ) = √(For all attributes a ∑ (xi,a – xJ,a)2)

Backward Elimination

¨ For all attributes do
� Delete the attribute
� For each training example xi in the training data set

n Find the K nearest neighbors in the training data set based on
the Euclidean distance
Predict the class value by finding the maximum class representedn Predict the class value by finding the maximum class represented
in the K nearest neighbors

n Calculate the accuracy as
Accuracy = (# of correctly classified examples / # of training

examples) X 100
� If the accuracy has decreased, restore the deleted

attribute

Weighted K-NN using Backward
Elimination
¨ Read the training data from a file <x, f(x)>
¨ Read the testing data from a file <x, f(x)>
¨ Set K to some value
¨ Normalize the attribute values in the range 0 to 1.

� Value = Value / (1+Value);
Apply Backward Elimination¨ Apply Backward Elimination

¨ For each testing example in the testing data set
� Find the K nearest neighbors in the training data set based on the

Euclidean distance
� Predict the class value by finding the maximum class represented in the

K nearest neighbors
� Calculate the accuracy as

n Accuracy = (# of correctly classified examples / # of testing examples) X 100

Example of Backward Elimination

¨ # training examples 100
¨ # testing examples 100
¨ # attributes 50
¨ K 3
¨ Simple KNN

Accuracy/Correctly Classified Examples (training set) = 56 with all the � Accuracy/Correctly Classified Examples (training set) = 56 with all the
50 attributes

� Accuracy/Correctly Classified Examples (test set) = 51 with all the 50
attributes

¨ Applying the backward elimination, we eliminate 16 irrelevant
attributes
� Accuracy/Correctly Classified Examples (training set) = 70 with 34

attributes
� Accuracy/Correctly Classified Examples (test set) =64 with 34 attributes

Instance Weighted K-NN using
Gradient Descent
¨ Assumptions

� All the attribute values are numerical or real
� Class attribute values are discrete integer values

n For example: 0,1,2…..
¨ AlgorithmAlgorithm

� Read the training data from a file <x, f(x)>
� Read the testing data from a file <x, f(x)>
� Set K to some value
� Set the learning rate α
� Set the value of N for number of folds in the cross validation
� Normalize the attribute values in the range 0 to 1

n Value = Value / (1+Value)

Instance Weighted K-NN using
Gradient Descent Continued…
¨ Assign random weight wi to each instance xi in the training set
¨ Divide the number of training examples into N sets
¨ Train the weights by cross validation

� For every set Nk in N, do
n Set Nk = Validation Set
n For every example xi in N such that xi does not belong to Nk don For every example xi in N such that xi does not belong to Nk do

n Find the K nearest neighbors based on the Euclidean distance
n Calculate the class value as

n ∑ wk X xj,k where j is the class attribute
n If actual class != predicted class then apply gradient descent

n Error = Actual Class – Predicted Class
n For every Wk

§ Wk = Wk + α X Error

n Calculate the accuracy as
n Accuracy = (# of correctly classified examples / # of examples in Nk) X 100

Instance Weighted K-NN using
Gradient Descent Continued…
¨ Train the weights on the whole training data set

� For every training example xi
n Find the K nearest neighbors based on the Euclidean distance
n Calculate the class value as

n ∑ wk X xj,k where j is the class attribute
n If actual class != predicted class then apply gradient descentn If actual class != predicted class then apply gradient descent

n Error = Actual Class – Predicted Class
n For every Wk

n Wk = Wk + α X Error
n Calculate the accuracy as

n Accuracy = (# of correctly classified examples / # of training
examples) X 100

� Repeat the process till desired accuracy is reached

Instance Weighted K-NN using
Gradient Descent Continued…

¨ For each testing example in the testing set
� Find the K nearest neighbors based on the Euclidean

distance
� Calculate the class value as

n ∑ wk X xj,k where j is the class attribute

¨ Calculate the accuracy as
� Accuracy = (# of correctly classified examples / # of

testing examples) X 100

Example with Gradient Descent

¨ Consider K = 3, α = 0.2, and the 3 nearest neighbors to xq are x1,x2,x3

K nearest neighbors Euclidean Distance Class Random Weights

X1 12 1 W1 = 0.2

X2 14 2 W2 = 0.1

X3 16 2 W3 = 0.005
¨ Class of xq = 0.2 X 1 + 0.1 X 2 + 0.005 X 2 = 0.41 => 0
¨ Correct Class of xq = 1
¨ Applying Gradient Descent
¨ W1 = 0.2 + 0.2 X (1 - 0) = 0.4
¨ W2 = 0.1 + 0.2 X (1 - 0) = 0.3
¨ W3 = 0.005 + 0.2 X (1 - 0) = 0.205
¨ Class of xq = 0.4 X 1 + 0.3 X 2 + 0.205 X 2 = 1.41
¨ Class of xq => 1
¨ Simple K-NN would have predicted the class as 2

Attribute Weighted KNN

¨ Read the training data from a file <x, f(x)>
¨ Read the testing data from a file <x, f(x)>
¨ Set K to some value
¨ Set the learning rate α¨ Set the learning rate α
¨ Set the value of N for number of folds in the cross

validation
¨ Normalize the attribute values by standard deviation
¨ Assign random weight wi to each attribute Ai
¨ Divide the number of training examples into N sets

Attribute Weighted KNN continued

¨ Train the weights by cross validation
� For every set Nk in N, do

n Set Nk = Validation Set
n For every example xi in N such that xi does not belong to Nk do

n Find the K nearest neighbors based on the Euclidean distance

n Return the class that represents the maximum of the k instances
n If actual class != predicted class then apply gradient descent

n Error = Actual Class – Predicted Class
n For every Wk

§ Wk = Wk + α * Error * Vk (where Vk is the query attribute value)

n Calculate the accuracy as
n Accuracy = (# of correctly classified examples / # of examples in Nk) X

100

Attribute Weighted KNN continued

¨ Train the weights on the whole training data set
� For every training example xi

n Find the K nearest neighbors based on the Euclidean distance
n Return the class that represents the maximum of the k instances
n If actual class != predicted class then apply gradient descent

n Error = Actual Class – Predicted Class
n For every Wk

Wk = Wk + α * Error * Vk (where Vk is the query attribute value)n Wk = Wk + α * Error * Vk (where Vk is the query attribute value)

� Calculate the accuracy as Accuracy = (# of correctly classified examples / # of
training examples) X 100

� Repeat the process till desired accuracy is reached
¨ For each testing example in the testing set

� Find the K nearest neighbors based on the Euclidean distance
� Return the class that represents the maximum of the k instances
� Calculate the accuracy as

n Accuracy = (# of correctly classified examples / # of testing examples) X 100

Results (KNN Vs Back Elimination)

Heart Data Set K Learning Rate # of examples # of training
examples

of testing
examples

of attributes # of
classes

Accuracy

KNN 2 NA 270 224 46 13 2 78.26
Back
Elimination

2 NA 270 224 46 9 2 80.44

Wine Data Set K Learning Rate # of examples # of training
examples

of testing
examples

of attributes # of
classes

Accuracy

KNN 2 NA 178 146 32 13 3 78.26
Back
Elimination

2 NA 178 146 32 4 3 80.44

Hill Valley Data
Set

K Learning Rate # of examples # of training
examples

of testing
examples

of attributes # of
classes

Accuracy

KNN 2 NA 1212 606 606 100 2 54.95
Back
Elimination

2 NA 1212 606 606 94 2 54.62

Results (KNN Vs Back Elimination)

50
60
70
80
90

100

KNN

0
10
20
30
40
50

Wine Data
Set

Heart Data
Set

Hill Valley
Data Set

KNN
Back Elimination

Accuracy
(%)

UCI Datasets

Results (KNN Vs Instance WKNN)

Heart Data
Set - 1

K Learning
Rate

of
examples

of training
examples

of testing
examples

of
attributes

of
classes

Accuracy

KNN 2 NA 303 203 100 13 4 56
Instance
WKNN

2 0.001 303 203 100 13 4 60

Wine Data
Set

K Learning
Rate

of
examples

of training
examples

of testing
examples

of
attributes

of
classes

Accuracy

KNN 2 NA 178 146 32 13 3 81.25
Instance
WKNN

2 0.005 178 146 32 13 3 81.25

Results (KNN Vs Instance WKNN)

40
50
60

70
80
90

KNN

0
10
20

30
40

Wine Data Set Heart Data Set

KNN
Instance WKNN

Accuracy
(%)

UCI Datasets

Results (Heart Data Set)

Heart Data
Set

K Learning
Rate

of
examples

of
training
examples

of
testing
examples

of
attributes

of
classes

Accuracy

KNN 3 NA 270 224 46 13 2 78.26
Back 3 NA 270 224 46 11 2 84.78
Elimination
Attribute
WKNN

3 0.005 270 224 46 13 2 84.78

Instance
WKNN

3 0.001 270 224 46 13 2 73.91

Results (Heart Data Set)

78

80

82

84

86 Accuracy in %

68

70

72

74

76

78

KNN Back
Elimination

Attribute
WKNN

Instance
WKNN

Accuracy in %

Results (Wine Data Set)

Wine Data
Set

K Learning
Rate

of
examples

of
training
examples

of
testing
examples

of
attributes

of
classes

Accuracy

KNN 3 NA 178 146 32 13 3 87.5
Back 3 NA 178 146 32 10 3 84.38
Elimination
Attribute
WKNN

3 0.005 178 146 32 13 3 87.5

Instance
WKNN

3 0.005 178 146 32 13 3 62.5

Results (Wine Data Set)

60

70

80

90

100 Accuracy in %

0

10

20

30

40

50

KNN Back
Elimination

Attribute
WKNN

Instance
WKNN

Accuracy in %

Results (Heart-1 Data Set)

Heart-1
Data Set

K Learning
Rate

of
examples

of
training
examples

of
testing
examples

of
attributes

of
classes

Accuracy

KNN 3 NA 303 203 100 13 4 57
Back 3 NA 303 203 100 8 4 53
Elimination
Attribute
WKNN

3 0.005 303 203 100 13 4 58

Instance
WKNN

3 0.005 303 203 100 13 4 53

Results (Heart-1 Data Set)

55

56

57

58

59 Accuracy in %

50

51

52

53

54

55

KNN Back
Elimination

Attribute
WKNN

Instance
WKNN

Accuracy in %

Results (Hill Valley Data Set)

Hill Valley
Data Set

K Learning
Rate

of
examples

of
training
examples

of
testing
examples

of
attributes

of
classes

Accuracy

KNN 3 NA 1212 606 606 100 2 50.99
Back 3 NA 1212 606 606 94 2 50.66
Elimination
Attribute
WKNN

3 0.005 1212 606 606 100 2 51.32

Instance
WKNN

3 0.005 1212 606 606 100 2

Results (Hill Valley Data Set)

51

51.2

51.4 Accuracy in %

50.2

50.4

50.6

50.8

KNN Back
Elimination

Attribute
WKNN

Instance
WKNN

Accuracy in %

Implementation

¨ Implemented in C++
¨ Implemented following algorithms

� Simple K-NN
� Weighted K-NN with backward elimination
� Weighted K-NN with cross validation and gradient descent

n Instance Weighted KNN
n Attribute Weighted KNN

Assumptions made while implementation¨ Assumptions made while implementation
� All the attribute values are numerical
� Class attribute values are distinct integer values

n For example: 0,1,2…..
� Euclidean Distance used for similarity measure
� For N fold cross validation, N = 3
� A training example which is not near any instance is removed from the training set
� For K = 1, do not consider the nearest with distance = 0 (nearest is the same as queried)

¨ Details will be available on my website in a couple of days
� http://www.d.umn.edu/~deoka001/index.html

DIET

¨ Outline

� What is DIET ?

� DIET Algorithm

� Wrapper Model

� Results

DIET

¨ DIET is an algorithm which uses a simple wrapper
approach to heuristically search through a set of
weights used for nearest neighbor classification.

¨ DIET sometimes causes features to lose
weight, sometimes to gain weight and sometimes to
remain the same.

DIET Algorithm

¨ In the DIET algorithm we have a discrete, finite set of weights instead
of continuous weights.

¨ If we choose k number of weights then the set of weights will be:
{0,1/k,2/k,…,(k-1)/k,1}

¨ If k = 2, then the set of weights would be {0, 1} which means that ¨ If k = 2, then the set of weights would be {0, 1} which means that
we either give weight = 0 or 1 to an attribute.

¨ When k = 1, we have only one weight which is taken as 0. This
translates into simply ignoring all the weights and predicting the
most frequent class.

¨ Generally when we have k weights, we start with the assignment
closest to the middle weight.

DIET Algorithm Continued…

¨ For each attribute we move through the weight space in
search of the weight which minimizes the error until
minimum or maximum of the weight is reached.

¨ The number of neighbors used in the classification is 1
since the goal is to investigate feature weighting rather since the goal is to investigate feature weighting rather
than the number of neighbors

¨ Error is calculated every time using tenfold cross
validation over the training data with KNN algorithm.

¨ A halting criterion is used where in we stop the search
when five consecutive nodes have children with no
better results than their parents. (0.1%)

Wrapper Model

¨ We search through the weight space heuristically using the
wrapper model.

¨ We search the space for feature subsets till we reach some
threshold accuracy.

¨ The paper mentions about using the wrapper model, but the ¨ The paper mentions about using the wrapper model, but the
authors have not mentioned how they have adapted the
model for DIET.

¨ The approaches used for feature subset selection are
backward elimination where you start with all the features
and greedily remove the one that most improves
performance and another is forward selection which starts
with a empty set of features and greedily adds features.

DIET Results

¨ For data sets that contain few or no irrelevant
features, DIET performs comparably to simple KNN or
slightly worse due to the increased size of the
hypothesis space.
For domains in which relevant features have equal ¨ For domains in which relevant features have equal
importance, DIET with few weights outperforms DIET
with many weights.

¨ DIET with one non zero weight, which means that either
a feature is relevant or irrelevant, outperforms DIET
with many weights on most of real world data sets
tested.

References

¨ Machine Learning – Tom Mitchell

¨ The Utility of Feature Weighting in Nearest-
Neighbor Algorithms - Ron Kohavi, Pat Neighbor Algorithms - Ron Kohavi, Pat
Langley, Yeogirl Yun

¨ Irrelevant Features and the Subset Selection
Problem – George John, Ron Kohavi, Karl Pfleger

