
Memory examples

Chapter 5

Memories

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

Digital Design — Chapter 5 — Memories 2

Example: Coefficient Multiplier

 Compute function

 Coefficient stored in flow-through SSRAM

 12-bit unsigned integer index for i

 x, y, ci 20-bit signed fixed-point

 8 pre- and 12 post-binary point bits

 Use a single multiplier

 Multiply ci × x × x

2xcy i 

Verilog

Digital Design — Chapter 5 — Memories 3

Multiplier Datapath

Verilog

Digital Design — Chapter 5 — Memories 4

Multiplier Timing and Control

Verilog

Digital Design — Chapter 5 — Memories 5

Pipelined SSRAM

 Data output also has a register

 More suitable for high-speed systems

 Access RAM in one cycle, use the data in
the next cycle

a
1

xx

xx M(a
2
)

a
2

Verilog

Digital Design — Chapter 5 — Memories 6

Memories in Verilog

 RAM storage represented by an array variable

reg [15:0] data_RAM [0:4095];
...

always @(posedge clk)
if (en)

if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else

d_out <= data_RAM[a];

Verilog

Digital Design — Chapter 5 — Memories 7

Example: Coefficient Multiplier

module scaled_square (output reg signed [7:-12] y,
input signed [7:-12] c_in, x,
input [11:0] i,
input start,
input clk, reset);

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:-12] c_out, x_out;

reg signed [7:-12] c_RAM [0:4095];

reg signed [7:-12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

Verilog

Digital Design — Chapter 5 — Memories 8

Example: Coefficient Multiplier

always @(posedge clk) // c RAM - flow through
if (c_ram_en)
if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin
if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

Verilog

Digital Design — Chapter 5 — Memories 9

Example: Coefficient Multiplier

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule

Verilog

Digital Design — Chapter 5 — Memories 10

Multiport Memories

 Multiple address, data and control
connections to the storage locations

 Allows concurrent accesses

 Avoids multiplexing and sequencing

 Scenario

 Data producer and data consumer

 What if two writes to a location occur
concurrently?

 Result may be unpredictable

 Some multi-port memories include an arbiter

Verilog

Digital Design — Chapter 5 — Memories 11

FIFO Memories

 First-In/First-Out buffer

 Connecting producer and consumer

 Decouples rates of production/consumption

FIFO
Producer

subsystem
Consumer
subsystem

 Implementation using
dual-port RAM

 Circular buffer

 Full: write-addr = read-addr

 Empty: write-addr = read-addr
write

read

Verilog

FIFO Example

 Design a FIFO to store up to 256 data items
of 16-bits each, using 256x 16-bit dual-port
SSRAM for the data storage. Assume the
FIFO will not be read when it is empty, not to
be written when it is full, and that the write
and read ports share a common clock.

Digital Design — Chapter 5 — Memories 12

Verilog

Digital Design — Chapter 5 — Memories 13

Example: FIFO Datapath

 Equal = full or empty

 Need to distinguish between these states — How?

Verilog

Digital Design — Chapter 5 — Memories 14

Example: FIFO Control

 Control FSM

 → filling when write without concurrent read

 → emptying when read without concurrent write

 Unchanged when concurrent write and read

full = filling and equal

empty = emptying and equal
wr_en, rd_en

Verilog

Digital Design — Chapter 5 — Memories 15

Multiple Clock Domains

 Need to resynchronize data that
traverses clock domains

 Use resynchronizing registers

 May overrun if sender's clock is faster
than receiver's clock

 FIFO smooths out differences in data
flow rates

 Latch cells inside FIFO RAM written with
sender's clock, read with receiver's clock

Verilog

Digital Design — Chapter 5 — Memories 16

Dynamic RAM (DRAM)

 Data stored in a 1-transistor/1-capacitor cell

 Smaller cell than SRAM, so more per chip

 But longer access time

 Write operation

 pull bit-line high or low (0 or 1)

 activate word line

 Read operation

 precharge bit-line to intermediate voltage

 activate word line, and sense charge equalization

 rewrite to restore charge

Verilog

Digital Design — Chapter 5 — Memories 17

DRAM Refresh

 Charge on capacitor decays over time

 Need to sense and rewrite periodically

 Typically every cell every 64ms

 Refresh each location

 DRAMs organized into banks of rows

 Refresh whole row at a time

 Can’t access while refreshing

 Interleave refresh among accesses

 Or burst refresh every 64ms

Verilog

Digital Design — Chapter 5 — Memories 18

Read-Only Memory (ROM)

 For constant data, or CPU programs

 Masked ROM
 Data manufactured into the ROM

 Programmable ROM (PROM)
 Use a PROM programmer

 Erasable PROM (EPROM)
 UV erasable

 Electrically erasable (EEPROM)

 Flash RAM

Verilog

Digital Design — Chapter 5 — Memories 19

Combinational ROM

 A ROM maps address input to data output

 This is a combinational function!

 Specify using a table

 Example: 7-segment decoder

Address Content Address Content

0 0111111 6 1111101

1 0000110 7 0000111

2 1011011 8 1111111

3 1001111 9 1101111

4 1100110 10–15 1000000

5 1101101 16–31 0000000

Verilog

Digital Design — Chapter 5 — Memories 20

Example: ROM in Verilog

module seven_seg_decoder (output reg [7:1] seg,
input [3:0] bcd,
input blank);

always @*
case ({blank, bcd})
5'b00000: seg = 7'b0111111; // 0
5'b00001: seg = 7'b0000110; // 1
5'b00010: seg = 7'b1011011; // 2
5'b00011: seg = 7'b1001111; // 3
5'b00100: seg = 7'b1100110; // 4
5'b00101: seg = 7'b1101101; // 5
5'b00110: seg = 7'b1111101; // 6
5'b00111: seg = 7'b0000111; // 7
5'b01000: seg = 7'b1111111; // 8
5'b01001: seg = 7'b1101111; // 9
5'b01010, 5'b01011, 5'b01100,
5'b01101, 5'b01110, 5'b01111:

seg = 7'b1000000; // "-" for invalid code
default: seg = 7'b0000000; // blank

endcase

endmodule

Verilog

Digital Design — Chapter 5 — Memories 21

Flash RAM

 Non-volatile, readable (relatively fast), writable
(relatively slow)

 Storage partitioned into blocks
 Erase a whole block at a time, then write/read

 Once a location is written, can't rewrite until erased

 NOR Flash
 Can write and read individual locations

 Used for program storage, random-access data

 NAND Flash
 Denser, but can only write and read block at a time

 Used for bulk data, e.g., cameras, memory sticks

Verilog

Digital Design — Chapter 5 — Memories 22

Summary

 Memory: addressable storage locations

 Read and Write operations

 Asynchronous RAM

 Synchronous RAM (SSRAM)

 Dynamic RAM (DRAM)

 Read-Only Memory (ROM) and Flash

 Multiport RAM and FIFOs

