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Numeric Basics

 Representing and processing numeric 
data is a common requirement

 unsigned integers

 signed integers

 fixed-point real numbers

 floating-point real numbers

 complex numbers
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Unsigned Integers

 Non-negative numbers (including 0)

 Represent real-world data

 e.g., temperature, position, time, …

 Also used in controlling operation of a 
digital system

 e.g., counting iterations, table indices

 Coded using unsigned binary (base 2) 
representation

 analogous to decimal representation
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Binary Representation

 Decimal: base 10

 12410 = 1×102 + 2×101 + 4×100

 Binary: base 2
 12410

= 1×26+1×25+1×24+1×23+1×22+0×21+0×20

= 11111002

 In general, a number x is represented using 
n bits as xn–1, xn–2, …, x0, where

0

0

2

2

1

1 222 xxxx n

n

n

n  





 



Verilog

Digital Design — Chapter 3 — Numeric Basics 5

Binary Representation

 Unsigned binary is a code for numbers

 n bits: represent numbers from 0 to 2n – 1

 0: 0000…00; 2n – 1: 1111…11

 To represent x: 0 ≤ x ≤ N – 1, need log2N bits

 Computers use

 8-bit bytes: 0, …, 255

 32-bit words: 0, …, ~4 billion

 (rather recently, 64-bit words)

 Digital circuits can use what ever size is 
appropriate
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Unsigned Integers in Verilog

 Use vectors as the representation
 Can apply arithmetic operations

module multiplexer_6bit_4_to_1
( output reg [5:0] z,
input [5:0] a0, a1, a2, a3,
input [1:0] sel );

always @*
case (sel)
2'b00: z = a0;
2'b01: z = a1;
2'b10: z = a2;
2'b11: z = a3;

endcase

endmodule
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Octal and Hexadecimal

 Short-hand notations for vectors of bits

 Octal (base 8)
 Each group of 3 bits represented by a digit

 0: 000, 1:001, 2: 010, …, 7: 111

 2538 = 010 101 0112

 110010112  11 001 0112 = 3138

 Hex (base 16) 
 Each group of 4 bits represented by a digit

 0: 0000, …, 9: 1001, A: 1010, …, F: 1111

 3CE16 = 0011 1100 11102

 110010112  1100 10112 = CB16
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Extending Unsigned Numbers

 To extend an n-bit number to m bits

 Add leading 0 bits

 e.g., 7210 = 1001000 = 000001001000

wire [3:0] x;
wire [7:0] y;

assign y = {4'b0000, x};

assign y = {4'b0, x};

assign y = x;
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Truncating Unsigned Numbers

 To truncate from m bits to n bits

 Discard leftmost bits

 Value is preserved if discarded bits are 0

 Result is x mod 2n

assign x = y[3:0];…
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Unsigned Addition

 Performed in the same way as decimal

overflow
carry 
bits

1 0 1 0 1 1 1 1 0 0

1 1 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 0 1 0

0 0 1 1 1 1 0 0 0 0

0 1 0 0 1

0 0 11 1 0

1 1 1 0 1

1 1 0 0 1
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Addition Circuits

 Half adder

 for least-significant bits

 Full adder

 for remaining bits

000 yxs 

001 yxc 

  iiii cyxs 

  iiiiii cyxyxc 1

xi yi ci si ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Ripple-Carry Adder

 Full adder for each bit, c0 = 0

overflow
 Worst-case delay

 from x0, y0 to sn

 carry must ripple through intervening 
stages, affecting sum bits
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Improving Adder Performance

 Carry kill:
xi yi ci si ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

 Carry propagate:

 Carry generate:

iii yxk 

iii yxp 

iii yxg 

 Adder equations

iii cps  iiii cpgc 1
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Fast-Carry-Chain Adder

 Also called Manchester adder

Xilinx FPGAs 
include this 
structure
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Carry Lookahead

iiii cpgc 1

0001 cpgc 

  001011000112 cppgpgcpgpgc 

00120121223 cpppgppgpgc 

001230123

1232334

cppppgppp

gppgpgc
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Carry-Lookahead Adder

 Avoids chained carry circuit

 Use multilevel lookahead for wider numbers
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Other Optimized Adders

 Other adders are based on other 
reformulations of adder equations

 Choice of adder depends on constraints

 e.g., ripple-carry has low area, so is ok for 
low performance circuits

 e.g., Manchester adder ok in FPGAs that 
include carry-chain circuits
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Adders in Verilog

 Use arithmetic ―+‖ operator

wire [7:0] a, b, s; 

...

assign s = a + b;

wire [8:0] tmp_result;
wire c;

...

assign tmp_result = {1'b0, a} + {1'b0, b};
assign c          = tmp_result[8];
assign s          = tmp_result[7:0];

assign {c, s} = {1'b0, a} + {1'b0, b};

assign {c, s} = a + b;
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Unsigned Subtraction

 As in decimal

borrow 
bits

1 0 1 0 0 1 1 0

0 1 0 1 1 1 0 0

0– 1 0 0 1 0 1 0

0 1 0 1 1 0 0 0

x:

y:

d:

b:
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Subtraction Circuits

 For least-significant bits

 For remaining bits

000 yxd 

001 yxb 

  iiii byxd 

  iiiiii byxyxb 1

xi yi bi si bi+1

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
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Adder/Subtracter Circuits

 Many systems add and subtract
 Trick: use complemented borrows
 HW: use boolean algebra to derive equations on the right from 

equations on the previous page

  iiii byxd 

  iiiiii byxyxb 1

  iiii cyxs 

  iiiiii cyxyxc 1

Addition Subtraction

 Same hardware can perform both

 For subtraction: complement y, set 10 b
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Adder/Subtracter Circuits

 Adder can be any of those we have seen

 depends on constraints
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Subtraction in Verilog

module adder_subtracter ( output [11:0] s,
output ovf_unf,
input [11:0] x, y,
input mode );

assign {ovf_unf, s} = !mode ? (x + y) : (x - y);

endmodule
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Increment and Decrement

 Adding 1: set y = 0 and c0 = 1

iii cxs  iii cxc 1

 These are equations for a half adder

 Similarly for decrementing: subtracting 1
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Increment/Decrement in Verilog

 Just add or subtract 1

wire [15:0] x, s;
...

assign s = x + 1;  // increment x

assign s = x - 1;  // decrement x

 Note: 1 (integer), not 1'b1 (bit)

 Automatically resized
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Equality Comparison

 XNOR gate: equality of two bits

 Apply bitwise to two unsigned numbers

assign eq = x == y;

 In Verilog, x == y gives 

a bit result

 1'b0 for false, 1'b1 for 
true

x
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Inequality Comparison

 Magnitude comparator for x > y
x
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Comparison Example in Verilog

 Thermostat with target termperature

 Heater or cooler on when actual 
temperature is more than 5° from target

module thermostat ( output heater_on, cooler_on,
input [7:0] target, actual );

assign heater_on = actual < target - 5;
assign cooler_on = actual > target + 5;

endmodule
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Scaling by Power of 2

 This is x shifted left k places, with k bits 

of 0 added on the right

 logical shift left by k places

 e.g., 000101102 × 23 = 000101100002

 Truncate if result must fit in n bits

 overflow if any truncated bit is not 0
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Scaling by Power of 2

 This is x shifted right k places, with k

bits truncated on the right

 logical shift right by k places

 e.g., 011101102 / 23 = 011102

 Fill on the left with k bits of 0 if result 
must fit in n bits
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Scaling in Verilog

 Shift-left (<<) and shift-right (>>) operations

 result is same size as operand

assign y = s << 2;

s = 000100112 = 1910

y = 010011002 = 7610

assign y = s >> 2;

s = 000100112 = 1910

y = 0001002 = 410
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Unsigned Multiplication

 yi x 2i is called a partial product

 if yi = 0, then yi x 2i = 0

 if yi = 1, then yi x 2i is x shifted left by i

 Combinational array multiplier
 AND gates form partial products

 adders form full product
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Unsigned 
Multiplication

 Adders can be any of 
those we have seen

 Optimized multipliers 
combine parts of 
adjacent adders
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Product Size

 Greatest result for n-bit operands:

 1221222)12)(12( 122  nnnnnnn

 Requires 2n bits to avoid overflow

 Multiplying n-bit and m-bit operands

 requires n + m bits

wire [ 7:0] x; wire [13:0] y; wire [21:0] p;
...

assign p = {14'b0, x} * {8'b0, y};

assign p = x * y;  // implicit resizing



Verilog

Digital Design — Chapter 3 — Numeric Basics 35

Other Unsigned Operations

 Division, remainder

 More complicated than multiplication

 Large circuit area, power

 Complicated operations are often 
performed sequentially

 in a sequence of steps, one per clock cycle

 cost/performance/power trade-off
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Signed Integers

 Positive and negative numbers (and 0)

 n-bit signed magnitude code

 1 bit for sign: 0  +, 1  –

 n – 1 bits for magnitude

 Signed-magnitude rarely used for 
integers now

 circuits are too complex

 Use 2s-complement binary code
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2s-Complement Representation

 Most-negative number

 1000…0 = –2n–1

 Most-positive number

 0111…1 = +2n–1 – 1

 xn–1 = 1 ⇒ negative,

xn–1 = 0 ⇒ non-negative

 Since 
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2s-Complement Examples

 00110101
 = 1×25 + 1×24 + 1×22 + 1×20 = 53

 10110101
 = –1×27 + 1×25 + 1×24 + 1×22 + 1×20

= –128 + 53 = –75

 00000000 = 0

 11111111 = –1

 10000000 = –128

 01111111 = +127
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Signed Integers in Verilog

 Use signed vectors

wire signed [ 7:0] a;

reg signed [13:0] b;

 Can convert between signed and 
unsigned interpretations

wire [11:0] s1;
wire signed [11:0] s2;
...

assign s2 = $signed(s1);  // s1 is known to be
// less than 2**11

...
assign s1= $unsigned(s2); // s2 is known to be nonnegative
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Octal and Hex Signed Integers

 Don’t think of signed octal or hex

 Just treat octal or hex as shorthand for a 
vector of bits

 E.g., 84410 is 001101001100

 In hex: 0011 0100 1100 ⇒ 34C

 E.g., –4210 is 1111010110

 In octal: 1 111 010 110 ⇒ 1726 (10 bits)
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Resizing Signed Integers

 To extend a non-negative number

 Add leading 0 bits

 e.g., 5310 = 00110101 = 000000110101

 To truncate a non-negative number

 Discard leftmost bits, provided

 discarded bits are all 0

 sign bit of result is 0

 E.g., 4110 is 00101001

 Truncating to 6 bits: 101001 — error!
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Resizing Signed Integers

 To extend a negative number

 Add leading 1 bits

 See textbook for proof

 e.g., –7510 = 10110101 = 111110110101

 To truncate a negative number

 Discard leftmost bits, provided

 discarded bits are all 1

 sign bit of result is 1
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Resizing Signed Integers

 In general, for 2s-complement integers

 Extend by replicating sign bit

 sign extension

 Truncate by discarding leading bits

 Discarded bits must all be the same, and the same as 
the sign bit of the result

wire signed [ 7:0] x;
wire signed [15:0] y;
...

assign y = {{8{x[7]}}, x};

assign y = x;
...

assign x = y;

… …
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Signed Negation

 Complement and add 1

 Note that
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 E.g., 43 is 00101011
so –43 is 11010100 + 1 = 11010101
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Signed Negation

 What about negating –2n–1?

 1000…00 ⇒ 0111…11 + 1 = 1000…00

 Result is –2n–1!

 Recall range of n-bit numbers is not 
symmetric

 Either check for overflow, extend by one 
bit, or ensure this case can’t arise

 In Verilog: use – operator

 E.g., assign y = –x;
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Signed Addition

 Perform addition as for unsigned

 Overflow if cn–1 differs from cn

 See textbook for case analysis

 Can use the same circuit for signed and 
unsigned addition
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Signed Addition Examples

no overflow

positive overflow negative overflow

no overflow no overflow

no overflow

0 1 0 0 1 0 0 0

0 1 1 1 1 0 0 1

0

72:

49:

121:

0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1

0

72:

105: 1 1 0 1 0 0 1

0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

1

–63:

–32:

–95:

1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 1

0 1 1 0 0 0 0 1

1

–63:

–96: 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0

1 1 0 1 1 1 1 0

0

–42:

–34:

8: 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0

1

42:

34:

–8: 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0
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Signed Addition in Verilog

 Result of + is same size as operands

wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...

assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension

 To check overflow, compare signs

wire signed [7:0] x, y, z;
wire ovf;
...

assign z   = x + y;
assign ovf = ~x[7] & ~y[7] & z[7] | x[7] & y[7] & ~z[7];
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Signed Subtraction

 Use a 2s-complement adder

 Complement y and set c0 = 1
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Other Signed Operations

 Increment, decrement

 same as unsigned

 Comparison

 =, same as unsigned

 >, compare sign bits using

 Multiplication

 Complicated by the need to sign extend 
partial products

 Refer to Further Reading

11   nn yx
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Scaling Signed Integers

 Multiplying by 2k

 logical left shift (as for unsigned)

 truncate result using 2s-complement rules

 Dividing by 2k

 arithmetic right shift

 discard k bits from the right, and replicate 
sign bit k times on the left

 e.g., s = "11110011"  -- –13 
shift_right(s, 2) = "11111100" -- –13 / 22
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Fixed-Point Numbers

 Many applications use non-integers

 especially signal-processing apps

 Fixed-point numbers

 allow for fractional parts

 represented as integers that are implicitly 
scaled by a power of 2

 can be unsigned or signed
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Positional Notation

 In decimal
2101

10 10410210010124.10  

 In binary

10

21012

2 25.5212021202101.101  

 Represent as a bit vector: 10101

 binary point is implicit
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Unsigned Fixed-Point

 n-bit unsigned fixed-point

 m bits before and f bits after binary point

f

f

m

m xxxxx 









  2222 1

1

0

0

1

1 

 Range: 0 to 2m – 2–f

 Precision: 2–f

 m may be ≤ 0, giving fractions only

 e.g., m= –2: 0.0001001101



Verilog

Digital Design — Chapter 3 — Numeric Basics 55

Signed Fixed-Point

 n-bit signed 2s-complement fixed-point

 m bits before and f bits after binary point

f

f

m

m xxxxx 









  2222 1

1

0

0

1

1 

 Range: –2m–1 to 2m–1 – 2–f

 Precision: 2–f

 E.g., 111101, signed fixed-point, m = 2

 11.11012 = –2 + 1 + 0.5 + 0.25 + 0.0625 
= –0.187510
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Choosing Range and Precision

 Choice depends on application

 Need to understand the numerical 
behavior of computations performed

 some operations can magnify quantization 
errors

 In DSP

 fixed-point range affects dynamic range

 precision affects signal-to-noise ratio

 Perform simulations to evaluate effects
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Fixed-Point in Verilog

 Use vectors with implied scaling

 Index range matches powers of weights

 Assume binary point between indices 0 
and –1

module fixed_converter ( input [5:-7] in,
output signed [7:-7] out );

assign out = {2'b0, in};

endmodule
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Fixed-Point Operations

 Just use integer hardware

 e.g., addition:

fff yxyx 2/)22( 

 Ensure binary points 
are aligned
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b
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y
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b
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b
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b
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c
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c
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c
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…

y
8

y
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Summary

 Unsigned:

 Signed:

 Octal and Hex short-hand

 Operations: resize, arithmetic, compare

 Arithmetic circuits trade off 
speed/area/power

 Fixed- and floating-point non-integers

 Gray codes for position encoding
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