
Digital Design:
An Embedded Systems
Approach Using Verilog

Chapter 3

Numeric Basics

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

Digital Design — Chapter 3 — Numeric Basics 2

Numeric Basics

 Representing and processing numeric
data is a common requirement

 unsigned integers

 signed integers

 fixed-point real numbers

 floating-point real numbers

 complex numbers

Verilog

Digital Design — Chapter 3 — Numeric Basics 3

Unsigned Integers

 Non-negative numbers (including 0)

 Represent real-world data

 e.g., temperature, position, time, …

 Also used in controlling operation of a
digital system

 e.g., counting iterations, table indices

 Coded using unsigned binary (base 2)
representation

 analogous to decimal representation

Verilog

Digital Design — Chapter 3 — Numeric Basics 4

Binary Representation

 Decimal: base 10

 12410 = 1×102 + 2×101 + 4×100

 Binary: base 2
 12410

= 1×26+1×25+1×24+1×23+1×22+0×21+0×20

= 11111002

 In general, a number x is represented using
n bits as xn–1, xn–2, …, x0, where

0

0

2

2

1

1 222 xxxx n

n

n

n

Verilog

Digital Design — Chapter 3 — Numeric Basics 5

Binary Representation

 Unsigned binary is a code for numbers

 n bits: represent numbers from 0 to 2n – 1

 0: 0000…00; 2n – 1: 1111…11

 To represent x: 0 ≤ x ≤ N – 1, need log2N bits

 Computers use

 8-bit bytes: 0, …, 255

 32-bit words: 0, …, ~4 billion

 (rather recently, 64-bit words)

 Digital circuits can use what ever size is
appropriate

Verilog

Digital Design — Chapter 3 — Numeric Basics 6

Unsigned Integers in Verilog

 Use vectors as the representation
 Can apply arithmetic operations

module multiplexer_6bit_4_to_1
(output reg [5:0] z,
input [5:0] a0, a1, a2, a3,
input [1:0] sel);

always @*
case (sel)
2'b00: z = a0;
2'b01: z = a1;
2'b10: z = a2;
2'b11: z = a3;

endcase

endmodule

Verilog

Digital Design — Chapter 3 — Numeric Basics 7

Octal and Hexadecimal

 Short-hand notations for vectors of bits

 Octal (base 8)
 Each group of 3 bits represented by a digit

 0: 000, 1:001, 2: 010, …, 7: 111

 2538 = 010 101 0112

 110010112 11 001 0112 = 3138

 Hex (base 16)
 Each group of 4 bits represented by a digit

 0: 0000, …, 9: 1001, A: 1010, …, F: 1111

 3CE16 = 0011 1100 11102

 110010112 1100 10112 = CB16

Verilog

Digital Design — Chapter 3 — Numeric Basics 8

Extending Unsigned Numbers

 To extend an n-bit number to m bits

 Add leading 0 bits

 e.g., 7210 = 1001000 = 000001001000

wire [3:0] x;
wire [7:0] y;

assign y = {4'b0000, x};

assign y = {4'b0, x};

assign y = x;

x
0

… …
…

x
1

x
n − 1

y
0

y
1

y
n − 1

y
n

y
m − 2

y
m − 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 9

Truncating Unsigned Numbers

 To truncate from m bits to n bits

 Discard leftmost bits

 Value is preserved if discarded bits are 0

 Result is x mod 2n

assign x = y[3:0];…

y
0

y
1

y
n − 1

x
0

x
1

x
n − 1

y
n

y
m − 2

y
m − 1

…
…

Verilog

Digital Design — Chapter 3 — Numeric Basics 10

Unsigned Addition

 Performed in the same way as decimal

overflow
carry
bits

1 0 1 0 1 1 1 1 0 0

1 1 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 0 1 0

0 0 1 1 1 1 0 0 0 0

0 1 0 0 1

0 0 11 1 0

1 1 1 0 1

1 1 0 0 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 11

Addition Circuits

 Half adder

 for least-significant bits

 Full adder

 for remaining bits

000 yxs

001 yxc

 iiii cyxs

 iiiiii cyxyxc 1

xi yi ci si ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 12

Ripple-Carry Adder

 Full adder for each bit, c0 = 0

overflow
 Worst-case delay

 from x0, y0 to sn

 carry must ripple through intervening
stages, affecting sum bits

Verilog

Digital Design — Chapter 3 — Numeric Basics 13

Improving Adder Performance

 Carry kill:
xi yi ci si ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

 Carry propagate:

 Carry generate:

iii yxk

iii yxp

iii yxg

 Adder equations

iii cps iiii cpgc 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 14

Fast-Carry-Chain Adder

 Also called Manchester adder

Xilinx FPGAs
include this
structure

x
i

g
i

p
i

k
i

s
i

c
i

c
i+1

y
i

x
i

p
i

s
i

c
i

c
i+1

y
i

Verilog

Digital Design — Chapter 3 — Numeric Basics 15

Carry Lookahead

iiii cpgc 1

0001 cpgc

 001011000112 cppgpgcpgpgc

00120121223 cpppgppgpgc

001230123

1232334

cppppgppp

gppgpgc

Verilog

Digital Design — Chapter 3 — Numeric Basics 16

Carry-Lookahead Adder

 Avoids chained carry circuit

 Use multilevel lookahead for wider numbers

x
0

g
0

p
0

p
3

s
3

c
0

c
3

c
4

y
0

x
1

g
1

p
1

y
1

x
2

g
2

p
2

y
2

x
3

g
3

p
3

y
3

p
2

s
2

c
2 p

1

s
1

c
1 p

0

s
0

carry-lookahead generator

Verilog

Digital Design — Chapter 3 — Numeric Basics 17

Other Optimized Adders

 Other adders are based on other
reformulations of adder equations

 Choice of adder depends on constraints

 e.g., ripple-carry has low area, so is ok for
low performance circuits

 e.g., Manchester adder ok in FPGAs that
include carry-chain circuits

Verilog

Digital Design — Chapter 3 — Numeric Basics 18

Adders in Verilog

 Use arithmetic ―+‖ operator

wire [7:0] a, b, s;

...

assign s = a + b;

wire [8:0] tmp_result;
wire c;

...

assign tmp_result = {1'b0, a} + {1'b0, b};
assign c = tmp_result[8];
assign s = tmp_result[7:0];

assign {c, s} = {1'b0, a} + {1'b0, b};

assign {c, s} = a + b;

Verilog

Digital Design — Chapter 3 — Numeric Basics 19

Unsigned Subtraction

 As in decimal

borrow
bits

1 0 1 0 0 1 1 0

0 1 0 1 1 1 0 0

0– 1 0 0 1 0 1 0

0 1 0 1 1 0 0 0

x:

y:

d:

b:

Verilog

Digital Design — Chapter 3 — Numeric Basics 20

Subtraction Circuits

 For least-significant bits

 For remaining bits

000 yxd

001 yxb

 iiii byxd

 iiiiii byxyxb 1

xi yi bi si bi+1

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 21

Adder/Subtracter Circuits

 Many systems add and subtract
 Trick: use complemented borrows
 HW: use boolean algebra to derive equations on the right from

equations on the previous page

 iiii byxd

 iiiiii byxyxb 1

 iiii cyxs

 iiiiii cyxyxc 1

Addition Subtraction

 Same hardware can perform both

 For subtraction: complement y, set 10 b

Verilog

Digital Design — Chapter 3 — Numeric Basics 22

Adder/Subtracter Circuits

 Adder can be any of those we have seen

 depends on constraints

y
0

y
1

y
n–1

y
0

c
0

c
n

y
1

y
n–1

…

…

…

…

x
0

x
1

x
n–1

x
0

x
1

x
n–1

… s
0

s
1

s
n–1

s
n–1

/d
n–1

s
1
/d

1
s

0
/d

0

…

adder

add/sub

ovf/unf

Verilog

Digital Design — Chapter 3 — Numeric Basics 23

Subtraction in Verilog

module adder_subtracter (output [11:0] s,
output ovf_unf,
input [11:0] x, y,
input mode);

assign {ovf_unf, s} = !mode ? (x + y) : (x - y);

endmodule

Verilog

Digital Design — Chapter 3 — Numeric Basics 24

Increment and Decrement

 Adding 1: set y = 0 and c0 = 1

iii cxs iii cxc 1

 These are equations for a half adder

 Similarly for decrementing: subtracting 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 25

Increment/Decrement in Verilog

 Just add or subtract 1

wire [15:0] x, s;
...

assign s = x + 1; // increment x

assign s = x - 1; // decrement x

 Note: 1 (integer), not 1'b1 (bit)

 Automatically resized

Verilog

Digital Design — Chapter 3 — Numeric Basics 26

Equality Comparison

 XNOR gate: equality of two bits

 Apply bitwise to two unsigned numbers

assign eq = x == y;

 In Verilog, x == y gives

a bit result

 1'b0 for false, 1'b1 for
true

x
0

eq…

y
0

x
1

y
1

x
n–1

y
n–1

…

Verilog

Digital Design — Chapter 3 — Numeric Basics 27

Inequality Comparison

 Magnitude comparator for x > y
x

n–1

gt

x
n–1

 > y
n–1

x
n–1

 = y
n–1

x
n–2

 > y
n–2

x
n–2

 = y
n–2

y
n–1

x
n–2

y
n–2

x
1
 > y

1

x
1…0

 > y
1…0

x
n–2…0

 > y
n–2…0

x
1
 = y

1

x
1

y
1

x
0
 > y

0
x

0

y
0

……

…

Verilog

Digital Design — Chapter 3 — Numeric Basics 28

Comparison Example in Verilog

 Thermostat with target termperature

 Heater or cooler on when actual
temperature is more than 5° from target

module thermostat (output heater_on, cooler_on,
input [7:0] target, actual);

assign heater_on = actual < target - 5;
assign cooler_on = actual > target + 5;

endmodule

Verilog

Digital Design — Chapter 3 — Numeric Basics 29

Scaling by Power of 2

 This is x shifted left k places, with k bits

of 0 added on the right

 logical shift left by k places

 e.g., 000101102 × 23 = 000101100002

 Truncate if result must fit in n bits

 overflow if any truncated bit is not 0

0

0

2

2

1

1 222 xxxx n

n

n

n

 01

0

2

2

1

1 2)0(202222

 kknk

n

nk

n

k xxxx

Verilog

Digital Design — Chapter 3 — Numeric Basics 30

Scaling by Power of 2

 This is x shifted right k places, with k

bits truncated on the right

 logical shift right by k places

 e.g., 011101102 / 23 = 011102

 Fill on the left with k bits of 0 if result
must fit in n bits

0

0

2

2

1

1 222 xxxx n

n

n

n

k

kk

kn

n

kn

n

k xxxxxx

 222222/ 0

1

1

02

2

1

1

Verilog

Digital Design — Chapter 3 — Numeric Basics 31

Scaling in Verilog

 Shift-left (<<) and shift-right (>>) operations

 result is same size as operand

assign y = s << 2;

s = 000100112 = 1910

y = 010011002 = 7610

assign y = s >> 2;

s = 000100112 = 1910

y = 0001002 = 410

Verilog

Digital Design — Chapter 3 — Numeric Basics 32

Unsigned Multiplication

 yi x 2i is called a partial product

 if yi = 0, then yi x 2i = 0

 if yi = 1, then yi x 2i is x shifted left by i

 Combinational array multiplier
 AND gates form partial products

 adders form full product

0

0

2

2

1

1

0

0

2

2

1

1

222

222

xyxyxy

yyyxxy

n

n

n

n

n

n

n

n

Verilog

Digital Design — Chapter 3 — Numeric Basics 33

Unsigned
Multiplication

 Adders can be any of
those we have seen

 Optimized multipliers
combine parts of
adjacent adders

x
0

y
1

x
1

x
n–1

y
0

c
0

c
n

y
1

y
n–1

y
n–2

…

……

x
n–2

x
0

x
1

x
n–2

… s
0

s
1

s
2

x
n–1

…

s
n–1

… s
1

s
2

…

… … …

s
n–1

adder

x
0

y
2

x
1

x
n–1

y
0

c
0

c
n

y
1

y
n–1

y
n–2

…

…

…

…

x
n–2

x
0

x
1

x
n–2

s
0

x
n–1

…

adder

… s
1

s
2

…

s
n–1

x
0

y
0

x
1

x
n–1

y
0

c
0

c
n

y
1

y
n–1

y
n–2

…

…

…

…

x
n–2

x
0

x
1

x
n–2

s
0

x
n–1

adder

… s
1

s
2

…

s
n–1

x
0

y
n–1

x
1

x
n–1

y
0

c
0

c
n

y
1

y
n–1

y
n–2

…

…

…

…

x
n–2

p
0

p
1

p
2

p
n–1

p
n

p
n+1

p
2n–2

p
2n–1

x
0

x
1

x
n–2

s
0

x
n–1

adder

Verilog

Digital Design — Chapter 3 — Numeric Basics 34

Product Size

 Greatest result for n-bit operands:

 1221222)12)(12(122 nnnnnnn

 Requires 2n bits to avoid overflow

 Multiplying n-bit and m-bit operands

 requires n + m bits

wire [7:0] x; wire [13:0] y; wire [21:0] p;
...

assign p = {14'b0, x} * {8'b0, y};

assign p = x * y; // implicit resizing

Verilog

Digital Design — Chapter 3 — Numeric Basics 35

Other Unsigned Operations

 Division, remainder

 More complicated than multiplication

 Large circuit area, power

 Complicated operations are often
performed sequentially

 in a sequence of steps, one per clock cycle

 cost/performance/power trade-off

Verilog

Digital Design — Chapter 3 — Numeric Basics 36

Signed Integers

 Positive and negative numbers (and 0)

 n-bit signed magnitude code

 1 bit for sign: 0 +, 1 –

 n – 1 bits for magnitude

 Signed-magnitude rarely used for
integers now

 circuits are too complex

 Use 2s-complement binary code

Verilog

Digital Design — Chapter 3 — Numeric Basics 37

2s-Complement Representation

 Most-negative number

 1000…0 = –2n–1

 Most-positive number

 0111…1 = +2n–1 – 1

 xn–1 = 1 ⇒ negative,

xn–1 = 0 ⇒ non-negative

 Since

0

0

2

2

1

1 222 xxxx n

n

n

n

1222 102 nn

Verilog

Digital Design — Chapter 3 — Numeric Basics 38

2s-Complement Examples

 00110101
 = 1×25 + 1×24 + 1×22 + 1×20 = 53

 10110101
 = –1×27 + 1×25 + 1×24 + 1×22 + 1×20

= –128 + 53 = –75

 00000000 = 0

 11111111 = –1

 10000000 = –128

 01111111 = +127

Verilog

Digital Design — Chapter 3 — Numeric Basics 39

Signed Integers in Verilog

 Use signed vectors

wire signed [7:0] a;

reg signed [13:0] b;

 Can convert between signed and
unsigned interpretations

wire [11:0] s1;
wire signed [11:0] s2;
...

assign s2 = $signed(s1); // s1 is known to be
// less than 2**11

...
assign s1= $unsigned(s2); // s2 is known to be nonnegative

Verilog

Digital Design — Chapter 3 — Numeric Basics 40

Octal and Hex Signed Integers

 Don’t think of signed octal or hex

 Just treat octal or hex as shorthand for a
vector of bits

 E.g., 84410 is 001101001100

 In hex: 0011 0100 1100 ⇒ 34C

 E.g., –4210 is 1111010110

 In octal: 1 111 010 110 ⇒ 1726 (10 bits)

Verilog

Digital Design — Chapter 3 — Numeric Basics 41

Resizing Signed Integers

 To extend a non-negative number

 Add leading 0 bits

 e.g., 5310 = 00110101 = 000000110101

 To truncate a non-negative number

 Discard leftmost bits, provided

 discarded bits are all 0

 sign bit of result is 0

 E.g., 4110 is 00101001

 Truncating to 6 bits: 101001 — error!

Verilog

Digital Design — Chapter 3 — Numeric Basics 42

Resizing Signed Integers

 To extend a negative number

 Add leading 1 bits

 See textbook for proof

 e.g., –7510 = 10110101 = 111110110101

 To truncate a negative number

 Discard leftmost bits, provided

 discarded bits are all 1

 sign bit of result is 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 43

Resizing Signed Integers

 In general, for 2s-complement integers

 Extend by replicating sign bit

 sign extension

 Truncate by discarding leading bits

 Discarded bits must all be the same, and the same as
the sign bit of the result

wire signed [7:0] x;
wire signed [15:0] y;
...

assign y = {{8{x[7]}}, x};

assign y = x;
...

assign x = y;

… …
…

x
0

x
1

x
n − 1

y
0

y
1

y
n − 1

y
n

y
m − 2

y
m − 1

Verilog

Digital Design — Chapter 3 — Numeric Basics 44

Signed Negation

 Complement and add 1

 Note that

xx

xxx

xxx

xxxx

nn

nn

n

n

n

n

n

n

nn

n

n

n

n

n

n

11

021

0

0

2

2

1

1

0

0

02

2

21

1

1

0

0

2

2

1

1

22

1)22(2

)222(

1222222

12)1(2)1(2)1(1

ii xx 1

 E.g., 43 is 00101011
so –43 is 11010100 + 1 = 11010101

Verilog

Digital Design — Chapter 3 — Numeric Basics 45

Signed Negation

 What about negating –2n–1?

 1000…00 ⇒ 0111…11 + 1 = 1000…00

 Result is –2n–1!

 Recall range of n-bit numbers is not
symmetric

 Either check for overflow, extend by one
bit, or ensure this case can’t arise

 In Verilog: use – operator

 E.g., assign y = –x;

Verilog

Digital Design — Chapter 3 — Numeric Basics 46

Signed Addition

 Perform addition as for unsigned

 Overflow if cn–1 differs from cn

 See textbook for case analysis

 Can use the same circuit for signed and
unsigned addition

02

1

12

 n

n

n xxx 02

1

12

 n

n

n yyy

0202

1

11 2)(

 nn

n

nn yxyxyx

yields cn–1

Verilog

Digital Design — Chapter 3 — Numeric Basics 47

Signed Addition Examples

no overflow

positive overflow negative overflow

no overflow no overflow

no overflow

0 1 0 0 1 0 0 0

0 1 1 1 1 0 0 1

0

72:

49:

121:

0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1

0

72:

105: 1 1 0 1 0 0 1

0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

1

–63:

–32:

–95:

1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 1

0 1 1 0 0 0 0 1

1

–63:

–96: 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0

1 1 0 1 1 1 1 0

0

–42:

–34:

8: 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0

1

42:

34:

–8: 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

Verilog

Digital Design — Chapter 3 — Numeric Basics 48

Signed Addition in Verilog

 Result of + is same size as operands

wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...

assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension

 To check overflow, compare signs

wire signed [7:0] x, y, z;
wire ovf;
...

assign z = x + y;
assign ovf = ~x[7] & ~y[7] & z[7] | x[7] & y[7] & ~z[7];

Verilog

Digital Design — Chapter 3 — Numeric Basics 49

Signed Subtraction

 Use a 2s-complement adder

 Complement y and set c0 = 1

1)(yxyxyx

y
0

y
1

y
n–1

y
0

c
0

c
n

y
1

y
n–1

…

…

…

…

x
0

x
1

x
n–1

x
0

x
1

x
n–1

… s
0

s
1

s
n–1

s
n–1

/d
n–1

s
1
/d

1
s

0
/d

0

…

c
n–1

adder

add/sub

unsigned

ovf/und

signed

ovf

Verilog

Digital Design — Chapter 3 — Numeric Basics 50

Other Signed Operations

 Increment, decrement

 same as unsigned

 Comparison

 =, same as unsigned

 >, compare sign bits using

 Multiplication

 Complicated by the need to sign extend
partial products

 Refer to Further Reading

11 nn yx

Verilog

Digital Design — Chapter 3 — Numeric Basics 51

Scaling Signed Integers

 Multiplying by 2k

 logical left shift (as for unsigned)

 truncate result using 2s-complement rules

 Dividing by 2k

 arithmetic right shift

 discard k bits from the right, and replicate
sign bit k times on the left

 e.g., s = "11110011" -- –13
shift_right(s, 2) = "11111100" -- –13 / 22

Verilog

Digital Design — Chapter 3 — Numeric Basics 52

Fixed-Point Numbers

 Many applications use non-integers

 especially signal-processing apps

 Fixed-point numbers

 allow for fractional parts

 represented as integers that are implicitly
scaled by a power of 2

 can be unsigned or signed

Verilog

Digital Design — Chapter 3 — Numeric Basics 53

Positional Notation

 In decimal
2101

10 10410210010124.10

 In binary

10

21012

2 25.5212021202101.101

 Represent as a bit vector: 10101

 binary point is implicit

Verilog

Digital Design — Chapter 3 — Numeric Basics 54

Unsigned Fixed-Point

 n-bit unsigned fixed-point

 m bits before and f bits after binary point

f

f

m

m xxxxx

 2222 1

1

0

0

1

1

 Range: 0 to 2m – 2–f

 Precision: 2–f

 m may be ≤ 0, giving fractions only

 e.g., m= –2: 0.0001001101

Verilog

Digital Design — Chapter 3 — Numeric Basics 55

Signed Fixed-Point

 n-bit signed 2s-complement fixed-point

 m bits before and f bits after binary point

f

f

m

m xxxxx

 2222 1

1

0

0

1

1

 Range: –2m–1 to 2m–1 – 2–f

 Precision: 2–f

 E.g., 111101, signed fixed-point, m = 2

 11.11012 = –2 + 1 + 0.5 + 0.25 + 0.0625
= –0.187510

Verilog

Digital Design — Chapter 3 — Numeric Basics 56

Choosing Range and Precision

 Choice depends on application

 Need to understand the numerical
behavior of computations performed

 some operations can magnify quantization
errors

 In DSP

 fixed-point range affects dynamic range

 precision affects signal-to-noise ratio

 Perform simulations to evaluate effects

Verilog

Digital Design — Chapter 3 — Numeric Basics 57

Fixed-Point in Verilog

 Use vectors with implied scaling

 Index range matches powers of weights

 Assume binary point between indices 0
and –1

module fixed_converter (input [5:-7] in,
output signed [7:-7] out);

assign out = {2'b0, in};

endmodule

Verilog

Digital Design — Chapter 3 — Numeric Basics 58

Fixed-Point Operations

 Just use integer hardware

 e.g., addition:

fff yxyx 2/)22(

 Ensure binary points
are aligned

x
0

10-bit

adder

……
a

–4

a
–5

a
–6

a
–7

x
7

a
3

x
8

x
9

y
0……

b
–4

y
7

b
3

b
4

b
5

c
–4

c
3

c
4

c
5

…

y
8

y
9

s
0…

s
7

s
8

s
9

Verilog

Digital Design — Chapter 3 — Numeric Basics 59

Summary

 Unsigned:

 Signed:

 Octal and Hex short-hand

 Operations: resize, arithmetic, compare

 Arithmetic circuits trade off
speed/area/power

 Fixed- and floating-point non-integers

 Gray codes for position encoding

0

0

2

2

1

1 222 xxxx n

n

n

n

0

0

2

2

1

1 222 xxxx n

n

n

n

