Digital Design: An Embedded Systems Approach Using Verilog

Chapter 3 Numeric Basics

Portions of this work are from the book, *Digital Design: An Embedded Systems Approach Using Verilog,* by Peter J. Ashenden, published by Morgan Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Numeric Basics

- Representing and processing numeric data is a common requirement
 - unsigned integers
 - signed integers
 - fixed-point real numbers
 - floating-point real numbers
 - complex numbers

Unsigned Integers

- Non-negative numbers (including 0)
 - Represent real-world data
 - e.g., temperature, position, time, …
 - Also used in controlling operation of a digital system
 - e.g., counting iterations, table indices
- Coded using unsigned binary (base 2) representation
 - analogous to decimal representation

Binary Representation

- Decimal: base 10
 124₁₀ = 1×10² + 2×10¹ + 4×10⁰
 Binary: base 2
 124₁₀ = 1×2⁶+1×2⁵+1×2⁴+1×2³+1×2²+0×2¹+0×2⁰ = 1111100₂
- In general, a number x is represented using n bits as x_{n-1}, x_{n-2}, ..., x₀, where

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$$

Binary Representation

Unsigned binary is a code for numbers

- *n* bits: represent numbers from 0 to $2^n 1$
 - 0: 0000...00; 2^{*n*}− 1: 1111...11
- To represent x: $0 \le x \le N 1$, need $\lceil \log_2 N \rceil$ bits
- Computers use

- 8-bit bytes: 0, ..., 255
- 32-bit words: 0, ..., ~4 billion
- (rather recently, 64-bit words)
- Digital circuits can use what ever size is appropriate

Unsigned Integers in Verilog

Verilog

Use vectors as the representation
 Can apply arithmetic operations

```
module multiplexer_6bit_4_to_1
  ( output reg [5:0] z,
        input [5:0] a0, a1, a2, a3,
        input [1:0] sel );
    always @*
    case (sel)
        2'b00: z = a0;
        2'b01: z = a1;
        2'b11: z = a2;
        2'b11: z = a3;
    endcase
endmodule
```

Octal and Hexadecimal

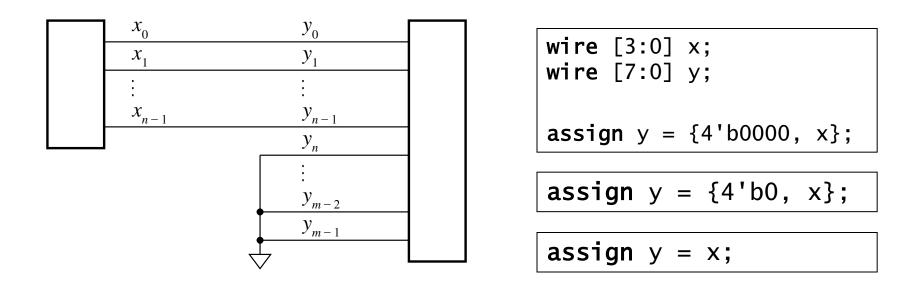
- Short-hand notations for vectors of bits
- Octal (base 8)

- Each group of 3 bits represented by a digit
- 0: 000, 1:001, 2: 010, ..., 7: 111
- $253_8 = 010\ 101\ 011_2$
- $11001011_2 \Rightarrow 11\ 001\ 011_2 = 313_8$
- Hex (base 16)
 - Each group of 4 bits represented by a digit
 - 0: 0000, ..., 9: 1001, A: 1010, ..., F: 1111
 - $3CE_{16} = 0011 \ 1100 \ 1110_2$
 - $11001011_2 \Rightarrow 1100 \ 1011_2 = CB_{16}$

Extending Unsigned Numbers

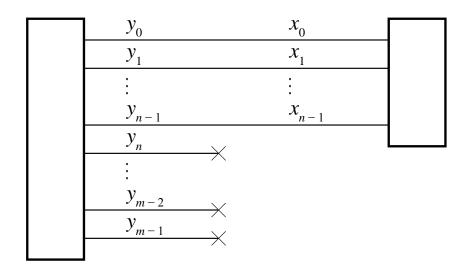
Verilog

To extend an *n*-bit number to *m* bits
Add leading 0 bits
e.g., 72₁₀ = 1001000 = 000001001000



Truncating Unsigned Numbers

- To truncate from *m* bits to *n* bits
 - Discard leftmost bits
 - Value is preserved if discarded bits are 0
 - Result is x mod 2ⁿ

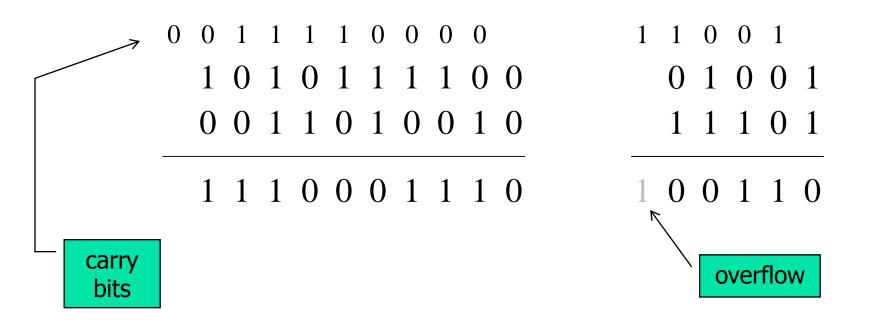


assign
$$x = y[3:0];$$

Unsigned Addition

Verilog

Performed in the same way as decimal



Addition Circuits

Half adder

for least-significant bits

 $s_0 = x_0 \oplus y_0$

$$c_1 = x_0 \cdot y_0$$

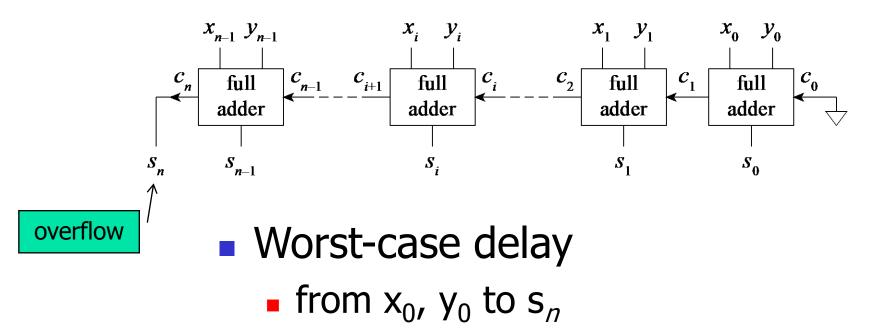
- Full adder
 - for remaining bits $s_i = (x_i \oplus y_i) \oplus c_i$

C_{i+1}	$= X_i$	$\cdot y_i$	$+(x_i)$	$\oplus y_i$	$) \cdot C_i$
ι +1	l	\mathcal{I}_{l}		$\mathcal{I}_{\mathcal{I}}$	

x _i	y _i	C _i	s _i	<i>C</i> _{<i>i</i>+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple-Carry Adder

• Full adder for each bit, $c_0 = 0$



 carry must ripple through intervening stages, affecting sum bits

Verilog **Improving Adder Performance** C_i $k_i = x_i \cdot y_i$ X_i y_i S_i C_{i+1} Carry kill: $\mathbf{0}$ Carry propagate: $p_i = x_i \oplus y_i$ $\mathbf{0}$ Carry generate: $g_i = x_i \cdot y_i$

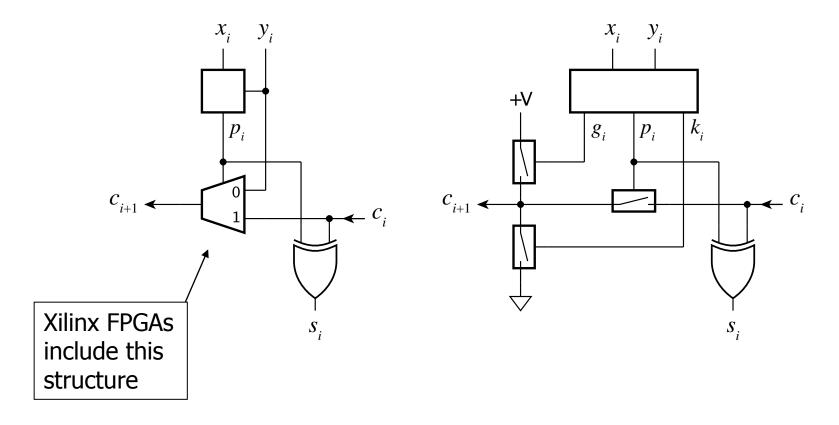
Adder equations

$$s_i = p_i \oplus c_i$$
 $c_{i+1} = g_i + p_i \cdot c_i$

Digital Design — Chapter 3 — Numeric Basics

Fast-Carry-Chain Adder

Also called Manchester adder



$$c_{i+1} = g_i + p_i \cdot c_i$$

$$c_{1} = g_{0} + p_{0} \cdot c_{0}$$

$$c_{2} = g_{1} + p_{1} \cdot (g_{0} + p_{0} \cdot c_{0}) = g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{3} = g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{4} = g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1}$$

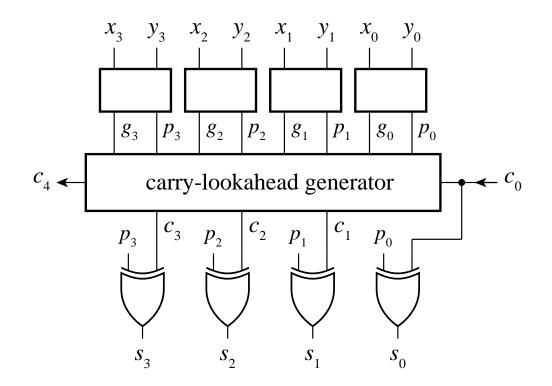
$$+ p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0} + p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

Digital Design — Chapter 3 — Numeric Basics

Carry-Lookahead Adder

Verilog

Avoids chained carry circuit



Use multilevel lookahead for wider numbers

Digital Design — Chapter 3 — Numeric Basics

Other Optimized Adders

- Other adders are based on other reformulations of adder equations
- Choice of adder depends on constraints
 - e.g., ripple-carry has low area, so is ok for low performance circuits
 - e.g., Manchester adder ok in FPGAs that include carry-chain circuits

Adders in Verilog

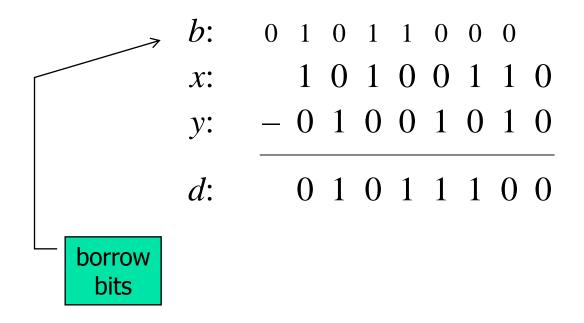
Use arithmetic "+" operator

wire [7:0] a, b, s; ...
assign s = a + b;

```
wire [8:0] tmp_result;
wire c;
...
assign tmp_result = {1'b0, a} + {1'b0, b};
assign c = tmp_result[8];
assign s = tmp_result[7:0];
assign {c, s} = {1'b0, a} + {1'b0, b};
assign {c, s} = a + b;
```

Unsigned Subtraction

As in decimal



Subtraction Circuits

For least-significant bits

$$d_0 = x_0 \oplus y_0$$
$$b_1 = \overline{x_0} \cdot y_0$$

Verilog

For remaining bits

$$d_i = (x_i \oplus y_i) \oplus b_i$$

$$b_{i+1} = \overline{x_i} \cdot y_i + \overline{(x_i \oplus y_i)} \cdot b_i$$

X _i	y _i	b_i	s _i	b_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Adder/Subtracter Circuits

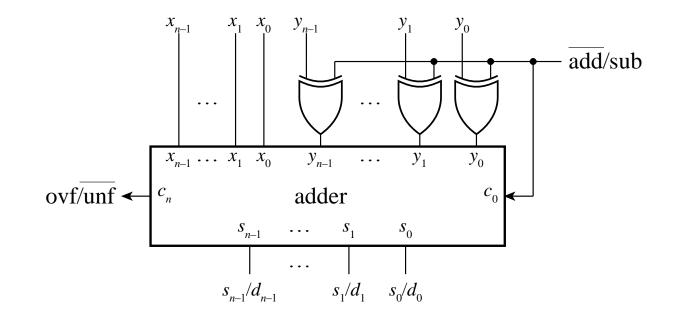
- Many systems add and subtract
 - Trick: use complemented borrows
 - HW: use boolean algebra to derive equations on the right from equations on the previous page

AdditionSubtraction $s_i = (x_i \oplus y_i) \oplus c_i$ $d_i = (x_i \oplus \overline{y_i}) \oplus \overline{b_i}$ $c_{i+1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_i$ $\overline{b_{i+1}} = x_i \cdot \overline{y_i} + (x_i \oplus \overline{y_i}) \cdot \overline{b_i}$

Same hardware can perform both
 For subtraction: complement y, set b₀ = 1

Adder/Subtracter Circuits

Verilog



Adder can be any of those we have seen
 depends on constraints

Subtraction in Verilog

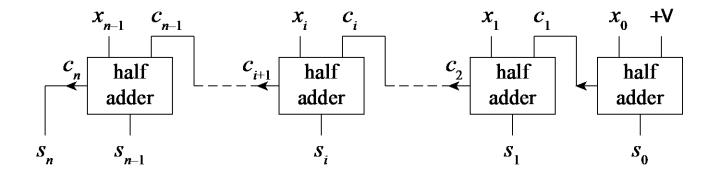
Increment and Decrement

• Adding 1: set y = 0 and $c_0 = 1$

Verilog

 $s_i = x_i \oplus c_i$ $c_{i+1} = x_i \cdot c_i$

These are equations for a half adder



Similarly for decrementing: subtracting 1

Digital Design — Chapter 3 — Numeric Basics

Increment/Decrement in Verilog

Just add or subtract 1

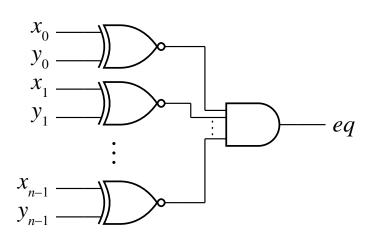
Verilog

wire [15:0] x, s; ... assign s = x + 1; // increment x assign s = x - 1; // decrement x

- Note: 1 (integer), not 1'b1 (bit)
 - Automatically resized

Equality Comparison

XNOR gate: equality of two bits Apply bitwise to two unsigned numbers

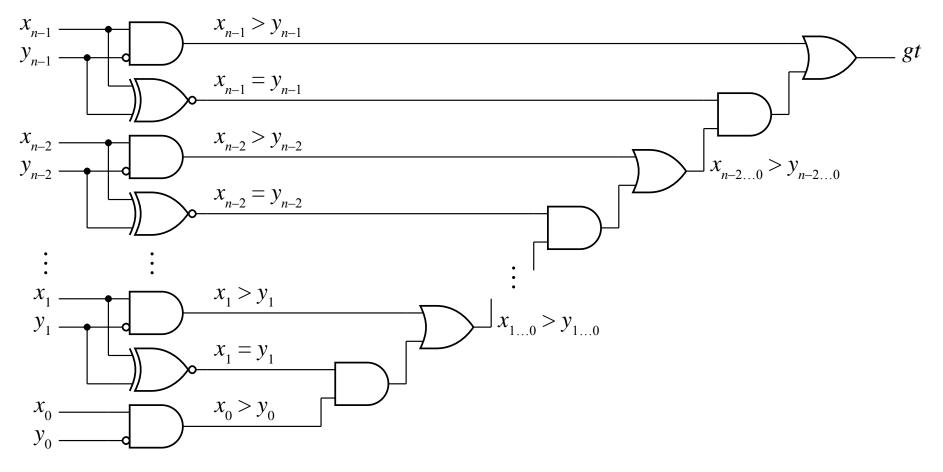


- In Verilog, x == y gives a bit result
 - 1'b0 for false, 1'b1 for true

Inequality Comparison

Verilog

Magnitude comparator for x > y



Digital Design — Chapter 3 — Numeric Basics

Comparison Example in Verilog

Verilog

 Thermostat with target termperature
 Heater or cooler on when actual temperature is more than 5° from target

Scaling by Power of 2

$$x = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_0 2^0$$

 $2^{k} x = x_{n-1} 2^{k+n-1} + x_{n-2} 2^{k+n-2} + \dots + x_0 2^{k} + (0) 2^{k-1} + \dots + (0) 2^{0}$

- This is x shifted left k places, with k bits of 0 added on the right
 - Iogical shift left by k places
 - e.g., $00010110_2 \times 2^3 = 00010110000_2$
- Truncate if result must fit in *n* bits
 overflow if any truncated bit is not 0

Scaling by Power of 2

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$$

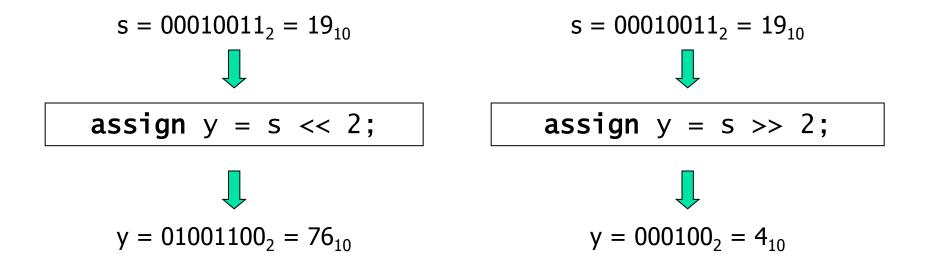
 $x/2^{k} = x_{n-1}2^{n-1-k} + x_{n-2}2^{n-2-k} + \dots + x_{k}2^{0} + x_{k-1}2^{-1} + \dots + x_{0}2^{-k}$

- This is x shifted right k places, with k bits truncated on the right
 - Iogical shift right by k places
 - e.g., 01110110₂ / 2³ = 01110₂
- Fill on the left with k bits of 0 if result must fit in n bits

Scaling in Verilog

Verilog

Shift-left (<<) and shift-right (>>) operations
 result is same size as operand



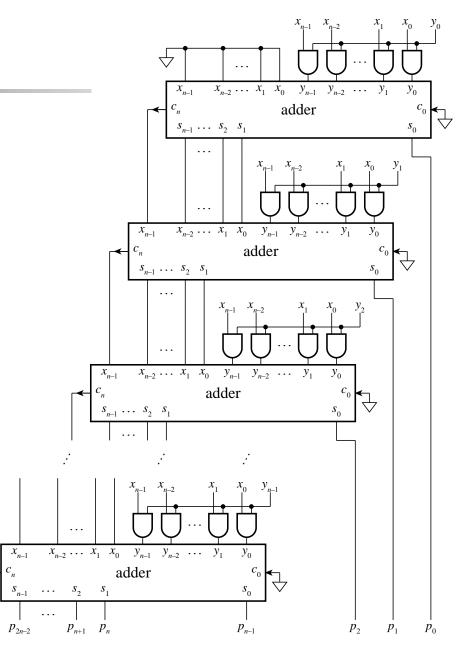
Unsigned Multiplication

$$xy = x \left(y_{n-1} 2^{n-1} + y_{n-2} 2^{n-2} + \dots + y_0 2^0 \right)$$
$$= y_{n-1} x 2^{n-1} + y_{n-2} x 2^{n-2} + \dots + y_0 x 2^0$$

y_ix 2ⁱ is called a partial product if y_i = 0, then y_ix 2ⁱ = 0 if y_i = 1, then y_ix 2ⁱ is x shifted left by i Combinational array multiplier AND gates form partial products adders form full product

Unsigned Multiplication

- Adders can be any of those we have seen
- Optimized multipliers combine parts of adjacent adders



Digital Design — Chapter 3 — Numeric Basics

 p_{2n-1}

Product Size

Greatest result for *n*-bit operands:

 $(2^{n}-1)(2^{n}-1) = 2^{2n}-2^{n}-2^{n}+1 = 2^{2n}-(2^{n+1}-1)$

- Requires 2n bits to avoid overflow
- Multiplying *n*-bit and *m*-bit operands
 requires *n* + *m* bits

wire [7:0] x; wire [13:0] y; wire [21:0] p;
...

assign p = {14'b0, x} * {8'b0, y};

assign p = x * y; // implicit resizing

Digital Design — Chapter 3 — Numeric Basics

Other Unsigned Operations

Division, remainder

- More complicated than multiplication
- Large circuit area, power
- Complicated operations are often performed sequentially
 - in a sequence of steps, one per clock cycle
 - cost/performance/power trade-off

Signed Integers

- Positive and negative numbers (and 0)
- *n*-bit *signed magnitude* code
 - 1 bit for sign: 0 \Rightarrow +, 1 \Rightarrow -
 - *n* − 1 bits for magnitude
- Signed-magnitude rarely used for integers now
 - circuits are too complex
- Use 2s-complement binary code

2s-Complement Representation

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$$

Most-negative number

$$\bullet 1000...0 = -2^{n-2}$$

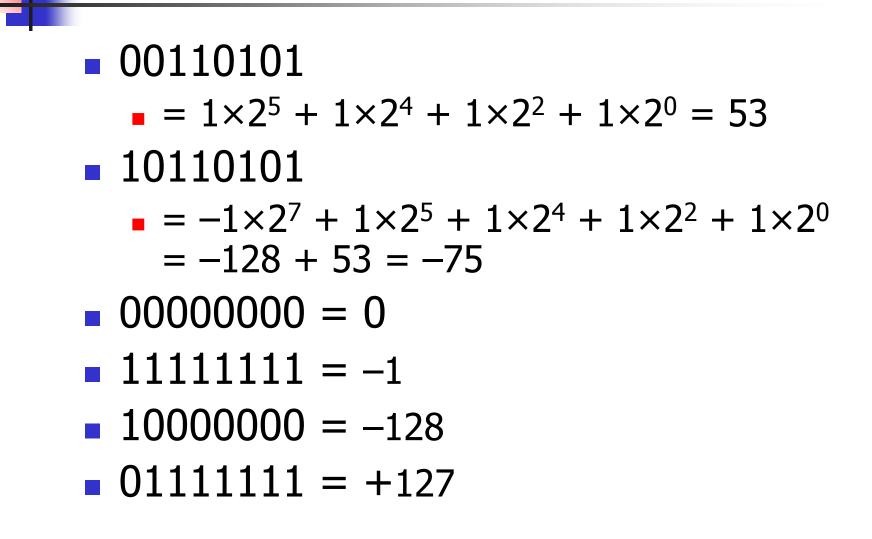
Verilog

Most-positive number

$$0111...1 = +2^{n-1} - 1$$

• $x_{n-1} = 1 \Rightarrow negative,$ $x_{n-1} = 0 \Rightarrow non-negative$ • Since $2^{n-2} + \dots + 2^0 = 2^{n-1} - 1$

2s-Complement Examples



```
Verilog
```

Signed Integers in Verilog

Use signed vectors

wire signed [7:0] a; reg signed [13:0] b;

Can convert between signed and unsigned interpretations

assign s1= \$unsigned(s2); // s2 is known to be nonnegative

Octal and Hex Signed Integers

- Don't think of signed octal or hex
 - Just treat octal or hex as shorthand for a vector of bits
- E.g., 844_{10} is 001101001100• In hex: 0011 0100 1100 \Rightarrow 34C
- E.g., -42₁₀ is 1111010110

Verilog

• In octal: 1 111 010 110 \Rightarrow 1726 (10 bits)

Resizing Signed Integers

- To extend a non-negative number
 - Add leading 0 bits

- e.g., 53₁₀ = 00110101 = 000000110101
- To truncate a non-negative number
 - Discard leftmost bits, provided
 - discarded bits are all 0
 - sign bit of result is 0
 - E.g., 41₁₀ is 00101001
 - Truncating to 6 bits: 101001 error!

Resizing Signed Integers

To extend a negative number
Add leading 1 bits

See textbook for proof
e.g., -75₁₀ = 10110101 = 111110110101

To truncate a negative number

Discard leftmost bits, provided
discarded bits are all 1

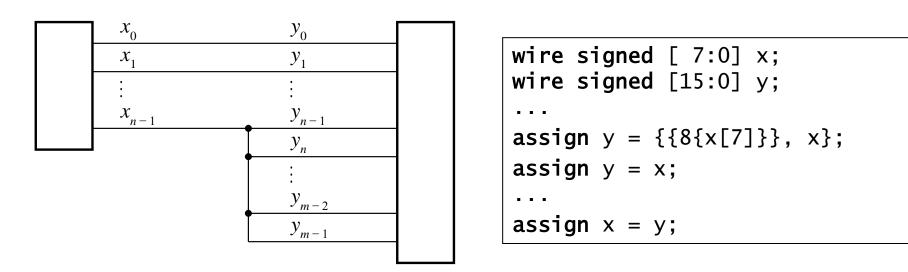
sign bit of result is 1

Resizing Signed Integers

- In general, for 2s-complement integers
 - Extend by replicating sign bit
 - sign extension

Verilog

- Truncate by discarding leading bits
 - Discarded bits must all be the same, and the same as the sign bit of the result



Digital Design — Chapter 3 — Numeric Basics

Signed Negation

- Complement and add 1 • Note that $x_i = 1 - x_i$ $x+1 = -(1-x_{n-1})2^{n-1} + (1-x_{n-2})2^{n-2} + \dots + (1-x_n)2^0 + 1$ $= -2^{n-1} + x_{n-1}2^{n-1} + 2^{n-2} - x_{n-2}2^{n-2} + \dots + 2^0 - x_02^0 + 1$ $= -(-x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0)$ $-2^{n-1}+(2^{n-2}+\cdots+2^{0})+1$ $=-x-2^{n-1}+2^{n-1}=-x$ E.g., 43 is 00101011
 - so -43 is 11010100 + 1 = 11010101

Digital Design — Chapter 3 — Numeric Basics

Signed Negation

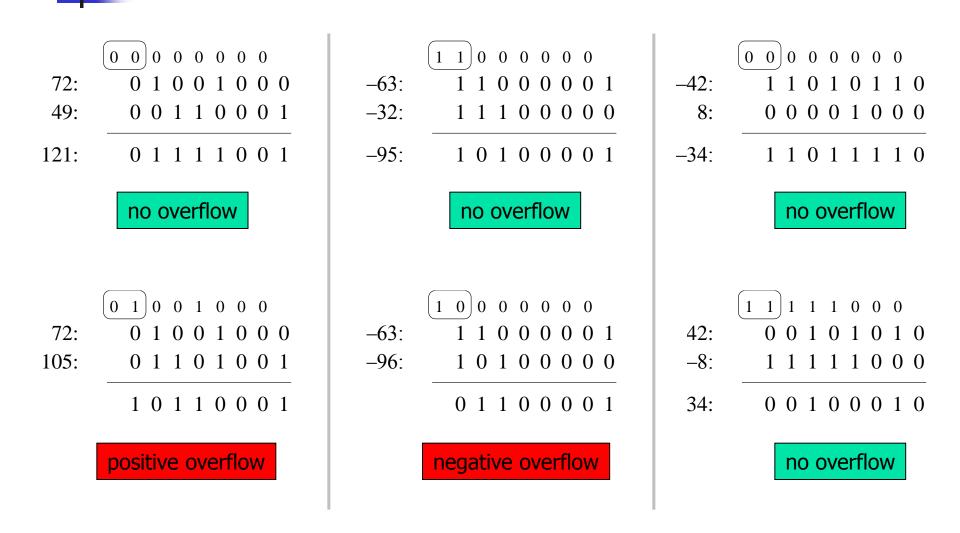
- What about negating −2^{*n*−1}?
 - $1000...00 \Rightarrow 0111...11 + 1 = 1000...00$
 - Result is $-2^{n-1}!$
- Recall range of *n*-bit numbers is not symmetric
 - Either check for overflow, extend by one bit, or ensure this case can't arise
- In Verilog: use operator
 - E.g., assign y = -x;

Signed Addition

$$x = -x_{n-1}2^{n-1} + x_{n-2...0} \qquad y = -y_{n-1}2^{n-1} + y_{n-2...0}$$
$$x + y = -(x_{n-1} + y_{n-1})2^{n-1} + x_{n-2...0} + y_{n-2...0}$$
$$\underbrace{yields \ c_{n-1}}$$

- Perform addition as for unsigned
 Overflow if c_{n-1} differs from c_n
 See textbook for case analysis
- Can use the same circuit for signed and unsigned addition

Signed Addition Examples



Signed Addition in Verilog

Result of + is same size as operands

```
wire signed [11:0] v1, v2;
wire signed [12:0] sum;
...
assign sum = {v1[11], v1} + {v2[11], v2};
...
assign sum = v1 + v2; // implicit sign extension
```

To check overflow, compare signs

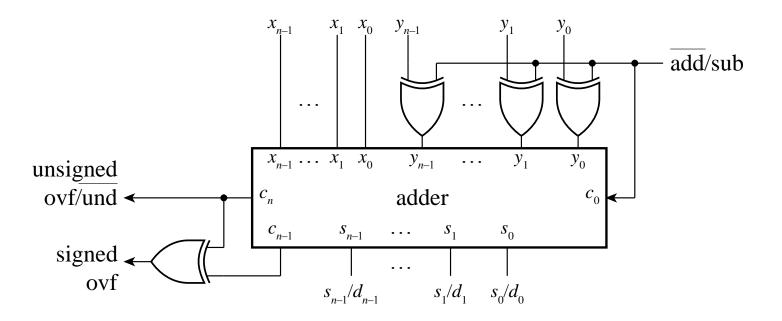
```
wire signed [7:0] x, y, z;
wire ovf;
...
assign z = x + y;
assign ovf = ~x[7] & ~y[7] & z[7] | x[7] & y[7] & ~z[7];
```

Digital Design — Chapter 3 — Numeric Basics

Signed Subtraction

$$x - y = x + (-y) = x + y + 1$$

Use a 2s-complement adder Complement y and set c₀ = 1



Digital Design — Chapter 3 — Numeric Basics

Other Signed Operations

- Increment, decrement
 - same as unsigned
- Comparison
 - =, same as unsigned
 - >, compare sign bits using $\overline{x_{n-1}} \cdot y_{n-1}$
- Multiplication
 - Complicated by the need to sign extend partial products
 - Refer to Further Reading

Scaling Signed Integers

Multiplying by 2^k

- logical left shift (as for unsigned)
- truncate result using 2s-complement rules
- Dividing by 2^k
 - arithmetic right shift
 - discard k bits from the right, and replicate sign bit k times on the left
 - e.g., s = "11110011" -- -13 shift_right(s, 2) = "11111100" -- -13 / 2²

Fixed-Point Numbers

- Many applications use non-integers
 especially signal-processing apps
- Fixed-point numbers

- allow for fractional parts
- represented as integers that are implicitly scaled by a power of 2
- can be unsigned or signed

Positional Notation

In decimal

 $10.24_{10} = 1 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 4 \times 10^{-2}$

In binary

 $101.01_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 5.25_{10}$

Represent as a bit vector: 10101 binary point is implicit

Unsigned Fixed-Point

n-bit unsigned fixed-point
 m bits before and *f* bits after binary point

$$x = x_{m-1} 2^{m-1} + \dots + x_0 2^0 + x_{-1} 2^{-1} + \dots + x_{-f} 2^{-f}$$

- Range: 0 to 2^{*m*} − 2^{−*f*}
- Precision: 2^{-f}

Verilog

m may be ≤ 0, giving fractions only
 e.g., *m*= −2: 0.0001001101

Signed Fixed-Point

n-bit signed 2s-complement fixed-point
 m bits before and *f* bits after binary point

$$x = -x_{m-1}2^{m-1} + \dots + x_02^0 + x_{-1}2^{-1} + \dots + x_{-f}2^{-f}$$

- Range: -2^{m-1} to $2^{m-1} 2^{-f}$
- Precision: 2^{-f}

Verilog

• E.g., 111101, signed fixed-point, m = 2• 11.1101₂ = -2 + 1 + 0.5 + 0.25 + 0.0625= -0.1875_{10}

Choosing Range and Precision

- Choice depends on application
- Need to understand the numerical behavior of computations performed
 - some operations can magnify quantization errors
- In DSP

Verilog

- fixed-point range affects dynamic range
- precision affects signal-to-noise ratio

Perform simulations to evaluate effects

Fixed-Point in Verilog

Verilog

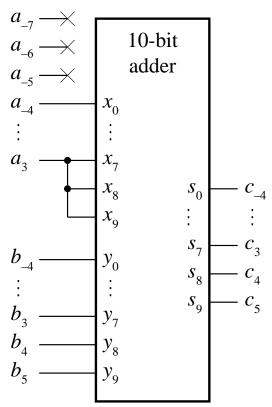
Use vectors with implied scaling

- Index range matches powers of weights
- Assume binary point between indices 0 and -1

Fixed-Point Operations

Verilog

Just use integer hardware e.g., addition: $x + y = (x \times 2^{f} + y \times 2^{f})/2^{f}$ Ensure binary points are aligned



Summary

- Unsigned: $x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$
- Signed: $x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_02^0$
- Octal and Hex short-hand
- Operations: resize, arithmetic, compare
- Arithmetic circuits trade off speed/area/power
- Fixed- and floating-point non-integers
- Gray codes for position encoding