Digital Design:
An Embedded Systems

!'_ Approach Using Verilog

Chapter 3
Numeric Basics

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

i Numeric Basics

= Representing and processing numeric
data is a common requirement
= unsigned integers
= Signed integers
« fixed-point real numbers
= floating-point real numbers
=« complex numbers

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Unsigned Integers

= Non-negative numbers (including 0)

= Represent real-world data
= €.g., temperature, position, time, ...

= Also used in controlling operation of a
digital system
= €.g., counting iterations, table indices

= Coded using unsigned binary (base 2)
representation

= analogous to decimal representation

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Binary Representation

s Decimal: base 10
= 124, = 1x102 + 2x10! + 4x100

= Binary: base 2

[| 12410
= 1x264+1%x25+1%244+1%x23+1%x224+0%x214+0x 20
=1111100,

= In general, a number x is represented using
nbits as x|, X, ,, ..., X, Where

n-1 n—-2 0
X=X 2 " +X ,2 “4+-+X%X2

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Binary Representation

= Unsigned binary is a code for numbers

= 71 bits: represent numbers from 0 to 27— 1
= 0: 0000...00; 27— 1: 1111...11

= To represent x: 0 < x < N— 1, need [log, V| bits
= Computers use

= 8-bit bytes: O, ..., 255

= 32-bit words: 0, ..., ~4 billion

= (rather recently, 64-bit words)

= Digital circuits can use what ever size is
appropriate

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Unsigned Integers in Verilog

= Use vectors as the representation
= Can apply arithmetic operations

module multiplexer_6bit_4_to_1
(output reg [5:0] z,
input [5:0] a0, al, a2, a3,
input [1:0] sel);
always @*
case (sel)
2'b00: z = a0;
2'b01: z = al;
2'b10: z = az2;
2'b1ll: z = a3;
endcase
endmodule

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Octal and Hexadecimal

= Short-hand notations for vectors of bits

= Octal (base 8)
« Each group of 3 bits represented by a digit
« 0: 000, 1:001, 2: 010, ..., 7: 111
= 2534 =010 101 011,
= 11001011, = 11 001 011, = 3134

= Hex (base 16)
= Each group of 4 bits represented by a digit
« 0: 0000, ..., 9: 1001, A: 1010, ..., F: 1111
= 3CE = 0011 1100 1110,
= 11001011, = 1100 1011, = CBy,

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Extending Unsigned Numbers

s 10 extend an 7bit number to /m bits
= Add leading 0 bits
= €.9., /24, = 1001000 = 000001001000

X y

XO yO wire [3:0] x;

- — wire [7:0] y;

X y
v assign y = {4'b0000, X};
y assign y = {4'b0, x};
Y-

assign y = Xx;

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Truncating Unsigned Numbers

= T0 truncate from m bits to n bits
» Discard leftmost bits
= Value is preserved if discarded bits are 0
= Result is x mod 2”

assign x = y[3:0];

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Unsigned Addition

= Performed in the same way as decimal

0011110000 1 1 00 1
1010111100 01001

0011010010 11101

1110001110 00110
| carry \

overflow

bits

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Addition Circuits

= Half adder
= for |least-significant bits

0

w

-

S =% D Yo
C =% Yo)((; il)i
= Full adder ——
= for remaining bits 0 | 1
1 | o
S :(Xi@yi)@ci 1 | o
1 | 1
Ci+1:Xi°Yi+(Xi®Yi)'Ci 1] 1

R 1 OoO|lr|O(kRP|O|FL,]|O

R OO, |O|FRL, |,]|O

Rk IFPIO(FRP|IO|O|0O|TF

Digital Design — Chapter 3 — Numeric Basics

11

Verilog

i Ripple-Carry Adder

= Full adder for each bit, ¢, = 0

xrkl y?kl xi yi xl yl x(} y(}
| | | -
Col full |Gon G| fll |G G| full | G full |G
adder adder adder adder (—§\7
| | | |
Sn Sn—l Si Sl SO

!

overflow s \Worst-case delay
= from Xor Yo to S,

= carry must ripple through intervening
stages, affecting sum bits

Digital Design — Chapter 3 — Numeric Basics 12

Verilog

i Improving Adder Performance

= Carry Kkill: Ki =X - Y,

Cis1

—

= Carry propagate: p,=X @Y,
—

= Carry generate: 0, =X Y,
—

Rl |R,Rr|lOlOO|lO|O|X
R |lr|lolo|lr|lRrR|lOo|lOo|I

R O|lRr|O|lR|O|R|[OI|O

R |lRr|lo|lR,r|lO|lRr|LR|O|»

P IPIPIOIPLPIO|O|O

= Adder equations

S =p; DG Ciu=0,+ 0 G

Digital Design — Chapter 3 — Numeric Basics

13

i Fast-Carry-Chain Adder

s Also called Manchester adder

XY
||

&

9 P, K

Xilinx FPGAs
include this
structure

¢ G = \I«Ci
5

Digital Design — Chapter 3 — Numeric Basics 14

Verilog

i Carry Lookahead

Cnu=0,+DPi G

C, =0+ Py-Cy
szgl"'pl'(go"'po'Co):gl"'pl'go"'pl'po'Co
C;=0,+P,-0,+Py-P-9g+ Py Pr- PG

C,=03+P3-9,+ P3P0,
+ P3Py Pr-Ggt+ P3Py Pr-Po-C

Digital Design — Chapter 3 — Numeric Basics

15

Verilog

i Carry-Lookahead Adder

= Avoids chained carry circuit

9; (P |9, [P, |9 [Py |9 | P

Cp < carry-lookahead generator Co
el

s, s, s, S,

= Use multilevel lookahead for wider numbers

Digital Design — Chapter 3 — Numeric Basics

16

Verilog

i Other Optimized Adders

= Other adders are based on other
reformulations of adder equations

= Choice of adder depends on constraints

= e.g., ripple-carry has low area, so is ok for
low performance circuits

= €.g., Manchester adder ok in FPGAs that
include carry-chain circuits

Digital Design — Chapter 3 — Numeric Basics 17

Verilog

i Adders in Verilog

= Use arithmetic "+" operator

wire [7:0] a, b, s;

assign s = a + b;

wire [8:0] tmp_result;
wire C;

assign tmp_result
assign c
assign s

{1'b0, a} + {1'b0, b};
tmp_result[8];
tmp_result[7:0];

assign {c, s} = {1'b0, a} + {1'b0, b};

assign {c, s} = a + b;

Digital Design — Chapter 3 — Numeric Basics

18

Verilog

‘L Unsigned Subtraction

= As in decimal

b: 01011000

X: 10100110
y: —-01001010
d:

/

01011100

Digital Design — Chapter 3 — Numeric Basics

19

Verilog

i Subtraction Circuits

= For least-significant bits

dy =% @Y, Xi | Vi | b | s | b

— o | 0| 0] 0O

b, =X, Yo o | o0 | 1|1 1

o[1] 0| 1|1

= For remaining bits S L
1 | 0] 0] 1|0

d, :(Xi®yi)®bi L I N I

B 1 | 1] 0] 0| o0
bi+1:Xi'yi+(Xi@yi)°bi 1 1 1 1 1

Digital Design — Chapter 3 — Numeric Basics

20

Verilog

i Adder/Subtracter Circuits

= Many systems add and subtract
= Trick: use complemented borrows

= HW: use boolean algebra to derive equations on the right from
equations on the previous page

Addition Subtraction

s, =(x@y,)®c d, =(Xi@yi)@5i

Ci+1:Xi'yi+(Xi@Yi)'Ci bi+1=xi?i+(xi69yi)-bi

= Same hardware can perform both
= For subtraction: complement y, set b, =1

Digital Design — Chapter 3 — Numeric Basics

21

Verilog

i Adder/Subtracter Circuits

X, X X

add/sub

OV.W

X EE X1 X
ovf/unf <& adder
S, .- S S,
s, /d_| s/d, s/d

= Adder can be any of those we have seen
= depends on constraints

Digital Design — Chapter 3 — Numeric Basics 22

Verilog

Subtraction in Verilog

module adder_subtracter (output [11:0] s,

output ovf_unf,

input [11:0] x, vy,

input mode);
assign {ovf_unf, s} = Imode ? (x +y) : (x - y);

endmodule

Digital Design — Chapter 3 — Numeric Basics

23

Verilog

i Increment and Decrement

s Adding 1: sety=0and ¢, =1
S; =X DC Ciii =X -G

= These are equations for a half adder

X ., C X, C, X, C, X, +V
| | | |
| half | | S| half | | %| half | | | half
adder adder adder adder
| | | |
Sn Sml Si Sl SO

= Similarly for decrementing: subtracting 1

Digital Design — Chapter 3 — Numeric Basics 24

Verilog

i Increment/Decrement in Verilog

= Just add or subtract 1

wire [15:0] x, s;

assign s = x + 1; // increment X

assign s = x - 1; // decrement x

= Note: 1 (integer), not 1'b1 (bit)
= Automatically resized

Digital Design — Chapter 3 — Numeric Basics

25

Verilog

i Equality Comparison

= XNOR gate: equality of two bits
= Apply bitwise to two unsigned numbers

= In Verilog, x == y gives

v) D a bit result
§1:)D° e = 1'b0 for false, 1'b1 for

true

;(/1 :)Dof assign eq = X == y;

Digital Design — Chapter 3 — Numeric Basics 26

Verilog

i Inequality Comparison

= Magnitude comparator for x >y

Xn—l > yn—1

gt
Xn—l = yn—l
Xn—z > yn—z

Xn—2...0 > yn—2...0
Xn—2 - yn—2

L

Xl...O N yl...O
X1 - y1
Xo > y0

-

Digital Design — Chapter 3 — Numeric Basics 27

Verilog

i Comparison Example in Verilog

= Thermostat with target termperature

= Heater or cooler on when actual
temperature is more than 5° from target

module thermostat (output heater_on, cooler_on,
input [7:0] target, actual);

actual < target - 5;
actual > target + 5;

assign heater_o
assign cooler_o

endmodule

n
n

Digital Design — Chapter 3 — Numeric Basics

Verilog

i Scaling by Power of 2

n-1 n-2 0
X=X _,2 " +X ,2 "+---+X,2

2“x=x_ 2" px 242 4 x 2X +(0)2 4+ (0)2°

= This is x shifted left k places, with k bits
of 0 added on the right

» Jogical shift left by k places
= €.g., 00010110, x 23 = 00010110000,

s Truncate if result must fit in n bits
= overflow if any truncated bit is not O

Digital Design — Chapter 3 — Numeric Basics 29

i Scaling by Power of 2

n-1 n—-2 0
X=X 2 " +X _,2 “H+-+X%X2

X[2=x 2" 4 x 2" i X 20 X g2 A X2

= This is x shifted right k places, with k
bits truncated on the right
s logical shift right by k places
« e.g.,, 01110110, / 23 = 01110,

= Fill on the left with k bits of 0 if result
must fit in n bits

Digital Design — Chapter 3 — Numeric Basics 30

Verilog

Scaling in Verilog

= Shift-left (<<) and shift-right (>>) operations

= result is same size as operand

s = 00010011, = 19,

!

assign y = s << 2;

s = 00010011, = 19,,

l

l

y = 01001100, = 76,,

assign y = s >> 2;

i

y = 000100, = 4,,

Digital Design — Chapter 3 — Numeric Basics

i Unsigned Multiplication

XYy = X(yn—lzn_l + Yn—zzn_2 +et+ Y, 20)

=y X2y Xx2" 4ty x2°

= y;x 2'is called a partial product
« ify. =0, theny,x2'=0
=« if y. =1, then y.x 21 is x shifted left by |
= Combinational array multiplier
= AND gates form partial products
= adders form full product

Digital Design — Chapter 3 — Numeric Basics 32

Verilog

Unsigned L1900

MUIt|pI|Cat|On +Cﬂ5“1::: Ly L [¥

= Adders can be any of SR 6 6 Iﬁiﬁ? 6
those we have seen o s v

= Optimized multipliers Tifﬁ st

X y Yoo -+ Y; Yo

combine parts of r i sl

adjacent adders N -
‘ ‘ ‘ ‘ Xo1 Xy X\ X Yo,
X X, X, X0 You Yoo -+ Ys yo
r C;H S2 S1 adder SoCO (%
I |

p2n—1 p2n—2 pn+1 pn pn—l pZ pl pO

Digital Design — Chapter 3 — Numeric Basics 33

Verilog

i Product Size

= Greatest result for n-bit operands:
(2" —1)(2" —1) =22" 2" — 2" +1=22"— (2" _1)

= Requires 2n bits to avoid overflow
= Multiplying n-bit and m-bit operands
= Fequires n + m bits

wire [7:0] x; wire [13:0] y; wire [21:0] p;

assign p = {14'b0, x} * {8'b0, y};

assign p = x *y; // implicit resizing

Digital Design — Chapter 3 — Numeric Basics 34

Verilog

i Other Unsigned Operations

= Division, remainder
= More complicated than multiplication
= Large circuit area, power

= Complicated operations are often
performed sequentially
= in @ sequence of steps, one per clock cycle
= cost/performance/power trade-off

Digital Design — Chapter 3 — Numeric Basics 35

i Signed Integers

= Positive and negative numbers (and 0)

= N-bit signed magnitude code
« 1 bitforsign: 0 = +, 1 = —
= n — 1 bits for magnitude

= Signed-magnitude rarely used for
integers now

= Circuits are too complex
s Use Zs-complement binary code

Digital Design — Chapter 3 — Numeric Basics

36

Verilog

i 2s-Complement Representation

n-1 n—-2 0
X=X 42 +X ,2 “4--+X2

= Most-negative number
« 1000...0 = —21
= Most-positive number
« 0111...1 = +271-1
= X, ; = 1 = negative,
X, ;1 = 0 = non-negative
= Since 2" +..-4+2°=2""-1

Digital Design — Chapter 3 — Numeric Basics

37

i 2s-Complement Examples

00110101
s = 1%x2° 4+ 1x2%4 + 1x22 + 1x20 = 53

10110101

s = —1%27 + 1%x2° + 1x2% + 1x22 + 1x20
= -128 + 53 = -75

00000000 =0
11111111 =1
10000000 = -128
01111111 = +127

Digital Design — Chapter 3 — Numeric Basics

38

Verilog

i Signed Integers in Verilog

= Use signed vectors

wire signed [7:0] a;
reg signed [13:0] b;

= Can convert between signed and

unsigned interpretations

wire [11:0] s1;
wire signed [11:0] s2;

assign s2 = $signed(sl); // sl is known to be
// less than 2*%*11

assign sl= $unsigned(s2); // s2 1is known to be nonnegative

Digital Design — Chapter 3 — Numeric Basics 39

i Octal and Hex Signed Integers

= Don't think of signed octal or hex

= Just treat octal or hex as shorthand for a
vector of bits

= E.g., 844, is 001101001100
= In hex: 0011 0100 1100 = 34C

« E.g., —42,,is 1111010110
« In octal: 1 111 010 110 = 1726 (10 bits)

Digital Design — Chapter 3 — Numeric Basics 40

Verilog

i Resizing Signed Integers

= 10 extend a non-negative number
= Add leading 0 bits
= €.9., 53, = 00110101 = 000000110101

= T0 truncate a non-negative number

» Discard leftmost bits, provided
= discarded bits are all 0
= Sign bit of result is 0

« E.g., 41,, is 00101001
= Truncating to 6 bits: 101001 — error!

Digital Design — Chapter 3 — Numeric Basics

41

Verilog

i Resizing Signed Integers

= 10 extend a negative number

= Add leading 1 bits
= See textbook for proof

= €.g., 75,5 = 10110101 = 111110110101
= 10 truncate a negative number

= Discard leftmost bits, provided
= discarded bits are all 1
= Sign bit of result is 1

Digital Design — Chapter 3 — Numeric Basics

42

Verilog

i Resizing Signed Integers

= In general, for 2s-complement integers
= Extend by replicating sign bit
= SIgn extension

= Truncate by discarding leading bits

= Discarded bits must all be the same, and the same as
the sign bit of the result

XO yO
X, Y, wire signed [7:0] x;
: : wire signed [15:0] y;
Xn—l yn—l .
Y, assign y = {{8{x[7]1}}, x};
; assign y = x;
Y2
Yo assign x = y;

Digital Design — Chapter 3 — Numeric Basics 43

Verilog

i Signed Negation

= Complement and add 1
= Note that x =1—x
X+1=—1-x_)2" +(1-x ,)2" 2 +---+(1—x,)2° +1
=-2"t e x 2" 2"t x 2" 420 - %, 20 +1
= (=X, 2"+ X 2" 4+ %, 2°)
“2" (2" 4+ 29) 41
=—xX=2"" 42" =—x

= E.g., 43 is 00101011
s0 —43 is 11010100 + 1 = 11010101

Digital Design — Chapter 3 — Numeric Basics

44

Verilog

i Signed Negation

= What about negating —2"-1?
« 1000...00 > 0111...11 + 1 = 1000...00
= Result is =21

= Recall range of rbit numbers is not
symmetric

« Either check for overflow, extend by one
bit, or ensure this case can't arise

= In Verilog: use — operator
« E.g.,, assign y = -X;

Digital Design — Chapter 3 — Numeric Basics 45

Verilog

i Signed Addition

n-1 n-1
X=—X_2" 4%, , Y==Yo12 "+ VY20

n—1
X+Y=—(X\y +¥na)2 +X 5 0+t Yo o

———

yields c, ,

= Perform addition as for unsigned
= Overflow if c_, differs from c,
= See textbook for case analysis

= Can use the same circuit for signed and
unsigned addition

Digital Design — Chapter 3 — Numeric Basics 46

Verilog

‘L Signed Addition Examples

12:
49:

121:

12:
105:

III'O 00O0O0O

01001000
00110001

01111001

01001000

01001000
01101001

10110001

11J000000
—63: 11000001 —42:
—-32: 11100000 8:
—95: 10100001 —34:
10000000
—63: 11000001 42:
-96: 10100000 —8:
01100001 34:

Digital Design — Chapter 3 — Numeric Basics

III'O 000O00O

1101011
0000100

0
0

1101111

11]111000

0010101
1111100

0

0
0

0010001

0

47

Verilog

i Signed Addition in Verilog

= Result of + is same size as operands

wire signed [11:0] v1, v2;
wire signed [12:0] sum;

assign sum = {v1[11], v1} + {v2[11], v2};

assign sum = vl + v2; // implicit sign extension

= [0 check overflow, compare signs

wire signed [7:0] x, vy, z;
wire ovf;

assign z
assign ovf

X +Y,
~x[7] & ~y[7] & z[7] | x[7] & y[7] & ~z[7];

Digital Design — Chapter 3 — Numeric Basics

48

Verilog

i Signed Subtraction

x—y:x+(—y):x+§/+1

= Use a 2s-complement adder
= Complement y and set ¢, = 1

OV.W

X X X

add/sub

. X ... X X
unsigned i L
ovf/und < C, adder
C. S, .-+ S S,
signed] |
ovf
s, /d_| s/d, s/d,

Digital Design — Chapter 3 — Numeric Basics 49

Verilog

i Other Signed Operations

= Increment, decrement
= Same as unsigned

= Comparison

= =, Same as unsigned

= >, compare sign bits using x_, -y,
= Multiplication

= Complicated by the need to sign extend
partial products

« Refer to Further Reading

Digital Design — Chapter 3 — Numeric Basics

50

Verilog

i Scaling Signed Integers

= Multiplying by 2k

= logical left shift (as for unsigned)

» truncate result using 2s-complement rules
O DIVIdlng by 2K

« arithmetic right shift

= discard k bits from the right, and replicate
sign bit k times on the left

= eg.,s="11110011" ---13
shift_right(s, 2) = "11111100" -- =13 / 22

Digital Design — Chapter 3 — Numeric Basics

51

Verilog

i Fixed-Point Numbers

= Many applications use non-integers
= especially signal-processing apps
= Fixed-point numbers

=« allow for fractional parts

= represented as integers that are implicitly
scaled by a power of 2

= can be unsigned or signed

Digital Design — Chapter 3 — Numeric Basics

52

Verilog

i Positional Notation

= In decimal
10.24,, =1x10" +0x10° +2x10* + 4x10°

= In binary
101.01, =1x 22 +0x2' +1x2° +0x 2 +1x 22 =5.25

= Represent as a bit vector: 10101
» binary point is implicit !

Digital Design — Chapter 3 — Numeric Basics 53

Verilog

i Unsigned Fixed-Point

= N-bit unsigned fixed-point
= m bits before and f bits after binary point

X=X 2" e X, 204X 27 X 27
= Range: 0 to 2m — 2
= Precision: 2

= m may be < 0, giving fractions only
= e.g., M= —2: 01001101

Digital Design — Chapter 3 — Numeric Basics

54

Verilog

i Signed Fixed-Point

= N-bit signed 2s-complement fixed-point
= m bits before and f bits after binary point

_ m-1 0 -1 —f
X=X 2" -+ X2 +X 2 ++X,2

= Range: —2™1 to 2m1 — 21
= Precision: 2
= E.g.,, 111101, signed fixed-point, m = 2

« 11,1101, =-2+ 1 + 0.5 + 0.25 + 0.0625
= —-0.18754,

Digital Design — Chapter 3 — Numeric Basics

55

Verilog

i Choosing Range and Precision

= Choice depends on application

= Need to understand the numerical
behavior of computations performed

= Some operations can magnify quantization
errors

= In DSP

= fixed-point range affects dynamic range
= precision affects signal-to-noise ratio

s Perform simulations to evaluate effects

Digital Design — Chapter 3 — Numeric Basics

56

Verilog

i Fixed-Point in Verilog

= Use vectors with implied scaling
= Index range matches powers of weights

= Assume binary point between indices 0
and —1

module fixed_converter (input [5:-7] 1n,
output signed [7:-7] out);

assign out = {2'b0, 1in};
endmodule

Digital Design — Chapter 3 — Numeric Basics

57

Verilog

i Fixed-Point Operations

= Just use integer hardware
= e.g., addition:

X+y=(xx2"+yx2")/2"

= Ensure binary points b,
are aligned X

10-bit
adder

Digital Design — Chapter 3 — Numeric Basics

i Summary

= Unsigned: x=x 2" +x ,2"? +---4x,2°

s Signed: x=-x_, 2" +x ,2" "+ 4 %, 2°

= Octal and Hex short-hand

= Operations: resize, arithmetic, compare

= Arithmetic circuits trade off
speed/area/power

= Fixed- and floating-point non-integers
= Gray codes for position encoding

Digital Design — Chapter 3 — Numeric Basics 59

