
More on Verilog

Sign extension: Example 1

wire [3:0] c, d
reg [4:0] sum;
always @ (c or d) begin
sum= {c[3],c} + {d[3],d};
end

2

Sign extension: Example 2

input [2:0] in;
reg [3:0] d;
wire [3:0] c;
output [4:0] sum;
reg [4:0] sum;

assign c = {in{2},in} + 4'h1;

always @(posedge clk)
d <= a;

always@(c or d)
sum <= {c[3],c} + {d[3],d};

3

Blocking example

• It is sequential in the sense that everything is updated one
statement at a time within one always block just as C/C++
does.

• Example:

wire a;
assign a = 1;
always @(posedge clk) begin

b = a;
c = b;

end

• Results:
At time = 0: clk = 0, a = 1, b = X, and c = X
At time = 1: clk = 1, a = 1, b = 1, and c = 1

Nonblocking Example

• The nonblocking statements do not wait for the previous
statements. They execute right away thus taking the old values
of signals.

• Example

wire a;
assign a = 1;
always @(posedge clk) begin

b <= a;
c <= b;

end

• Results
At time = 0: clk = 0, a = 1, b = X, and c = X
At time = 1: clk = 1, a = 1, b = 1, and c = X
At time = 2: clk = 0, a = 1, b = 1, and c = X
At time = 3: clk = 1, a = 1, b = 1, and c = 1

5

Never update one Reg using
multiple always blocks

• Example
reg a;
always @(posedge clk)

a = b & c;
always @(posedge clk or negedge reset)

if (~reset)
a = 0;

This maybe fine in simulation but confuses the
synthesis. For very complex state machines this can
also increase chances of creating bugs.

6

“Wildcard” support by Verilog-2001

• As of Verilog-2001, the language supports "wildcard" sensitivity
lists.

• Example:
reg a;
always @(b or c)

a = b & c;

• Can now be done like this:
always @(*)

a = b & c;
* = any input inside the always block. So now the only time you
don't use * is when you do posedge/negedge or intentionally
make a latch.

@(*) are very useful when you have a huge number of inputs
since it eliminates the chance of you forgetting something.

7

Arithmetic shift

Arithmetic right shift is this: >>> . Unlike regular right
shift it extends the MSB instead of simply putting '0'.

Example:

5'b11111 >> 4 = 00001

5'b11111 >>> 4 = 00001

$signed(5'b11111) >>> 4 = 11111

8

Arithmetic Shift Example

reg signed [15:0] my_number;

wire [15:0] new_number;

assign new_number = my_number >>> 4;

So "new_number" didn't need to be "wire signed" but
"my_number" did so that the ">>>" operation worked properly.

Alternative example:

reg [15:0] my_number;

wire [15:0] new_number;

assign new_number = $signed(my_number) >>> 4;

In this case I casted "my_number" to a "signed format" before doing
the arithmetic shift.

9

