
180 C H A P T E R F O U R s e q u e n t i a l b a s i c s

D

reset

Q
current_state

outputs
inputs

clk
reset

next
state
logic

output
logic

clk

F I G U R E 4 .31 Circuit structure
for a fi nite-state machine.

In general terms, a finite-state machine is defined by a set of inputs,
a set of outputs, a set of states, a transition function that governs transi-
tions between states, and an output function. The states are just abstract
values that mark steps in a sequence of operations. The machine is called
“finite-state” because the set of states is finite in size. The finite-state
machine has a current state in a given clock cycle. The transition function
determines the next state for the next clock cycle based on the current
state and, possibly, the values of inputs in the given clock cycle. The out-
put function determines the values of the outputs in a given clock cycle
based on the current state and, possibly, the values of inputs in the given
clock cycle.

Figure 4.31 shows a schematic representation of a finite-state machine.
The register stores the current state in binary coded form. One of the states
in the state set is designated the initial state. When the system is reset, the
register is reset to the binary code for the initial state; thus, the finite-state
machine assumes the initial state as its current state. During each clock
cycle, the value of the next state is computed by the next state logic, which
is a combinational circuit that implements the transition function. Also,
the outputs are driven with the value computed by the output logic, which
is a combinational circuit that implements the output function. The out-
puts are the control signals that govern operation of a datapath. On the
rising clock edge marking the beginning of the next clock cycle, the cur-
rent state is updated with the computed next-state value. The next state
may be the same as the previous state, or it may be a different state.

Finite-state machines are often divided into two classes. In a Mealy
finite-state machine, the output function depends on both the current
state and the values of the inputs. In such a machine, the connection
drawn with a dashed line in Figure 4.31 is present. If the input values
change during a clock cycle, the output values may change as a conse-
quence. In a Moore finite-state machine, on the other hand, the output
function depends only on the current state, and not on the input values.
The dashed connection in Figure 4.31 is absent in a Moore machine. If the
input values change during a clock cycle, the outputs remain unchanged.

In theory, for any Mealy machine, there is an equivalent Moore machine,
and vice versa. However, in practice, one or the other kind of machine will
be most appropriate. A Mealy machine may be able to implement a given
control sequence with fewer states, but it may be harder to meet timing
constraints, due to delays in arrival of inputs used to compute the next
state. As we present examples of finite-state machines, we will identify
whether they are Mealy or Moore machines.

In many finite-state machines, there is an idle state that indicates
that the system is waiting to start a sequence of operations. When an
input indicates that the sequence should start, the finite-state machine
follows a sequence of states on successive clock cycles, with the output
values controlling the operations in a datapath. Eventually, when the
sequence of operations is complete, the finite-state machine returns to
the idle state.

example 4 .16 Design a fi nite-state machine to implement the control
sequence for the complex multiplier described in Example 4.15. The control
sequence is initiated by input_rdy being 1 during the clock cycle in which new
data arrives at the datapath inputs.

solut ion Our finite-state machine needs five states, one for each of the
steps of the control sequence. Let’s call them step1 through step5. We also need
to deal with the case of waiting for input data to arrive. We could consider a
separate idle state for that case. When, in the idle state, input_rdy is 1, we would
then transition to state1 to start the multiplication; otherwise, we would stay
in the idle state. The problem with this is that it wastes a clock cycle, since we
would not perform the first multiplication until after the cycle in which data
arrived.

The alternative is to use step1 as the idle state. If it turns out that new data has
not arrived in a given clock cycle while in this state, we simply repeat step1 as
the next state. On the other hand, if new data has arrived, indicated by input_rdy

being 1 in the clock cycle, the real parts are multiplied during that clock cycle
and can be stored on the next clock edge. We would then transition to step2,
and on subsequent clock cycles to step3, step4 and step5. At the end of the
step5 clock cycle, the complete complex product is stored in the output registers
of the datapath, so we can transition back to step1 in the next clock cycle.

In summary, our finite-state machine has the signal input_rdy as its single input,
and the control signals listed in Example 4.15 as outputs. The state set is {step1,
step2, step3, step4, step5}, with step1 being the initial state. The transition
function is defined in Table 4.2. The output function is defined in Table 4.1.
Since the output function depends only on the current state and not on the input
value, this finite-state machine is a Moore machine.

4.3 Sequential Datapaths and Control C H A P T E R F O U R 181

cu r ren t _
s t a t e

inpu t _
rdy

nex t _
s t a t e

step1 0 step1

step1 1 step2

step2 – step3

step3 – step4

step4 – step5

step5 – step1

TAB LE 4 .2 The transition
function for the complex multiplier
fi nite-state machine.

182 C H A P T E R F O U R s e q u e n t i a l b a s i c s

An important issue to consider when designing a finite-state machine
is how to encode the state values. We glossed over that in Example 4.16
by treating the states as abstract values. As we discussed in Chapter 2,
if we have N states, we need at least ⎡log2N⎤ bits in our code. However,
we may choose to have more if that simplifies circuitry that uses encoded
states. In particular, while a longer than minimal code length requires
more flip-flops in the state register and more wires for the state signals,
it may make the next-state and output logic circuits simpler and smaller.
In general choosing an optimal state encoding is a complex mathematical
problem. However, synthesis CAD tools incorporate methods for choos-
ing a state encoding, so we may be able to let a tool make the choice for
us. One aspect of state encoding is the choice of a code word to represent
the initial state. In many cases, a good choice is a code word with all 0
bits, since that allows us to use a simple register with reset for the state
register. If some other code word is chosen for the initial state, that code
word must be loaded into the register on system reset.

Modeling Finite-State Machines in Verilog

Since a finite-state machine is composed of a register, next-state logic and
output logic, a straightforward way to model a finite-state machine is
to use the Verilog features that we already know for modeling registers
and combinational logic. The only aspect we have not addressed is how
to represent the state set, particularly when we want to take an abstract
view and leave state encoding to the synthesis tool. In Verilog, we can use
parameter definitions to specify a set of symbolic names associated with
the binary code words for the states. For example, we can define param-
eters for the states in Example 4.16 as follows:

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;

This defines five parameters, named step1 through step5, corresponding
to the binary code words 000 through 100, respectively. In the rest of the
state machine model, we just use the symbolic names, not the code word
values. A synthesis tool may be able to recode the state parameters, that is,
to choose an alternate encoding for the state set, to optimize the generated
hardware for the state machine.

We can declare a variable to represent the current state of a state
machine as follows:

reg [2:0] current_state;

This specifies that current_state is a vector that can take on parameter
values representing states. So, for example, we could make the following
assignment in a procedural block:

current_state <= step4;

to assign the value step4 to the variable.

example 4 .17 Develop a Verilog model of the fi nite-state machine in
Example 4.16.

solut ion We will augment the architecture declaration of Example 4.14
with the Verilog representation of the control section. The additional declarations
of parameters for the set of states and variables for the current and next state are

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
 step3 = 3'b010, step4 = 3'b011,
 step5 = 3'b100;
reg [2:0] current_state, next_state ;

4.3 Sequential Datapaths and Control C H A P T E R F O U R 183

The additional statements added to the module are

always @(posedge clk or posedge reset) // State register
if (reset) current_state <= step1;
else current_state <= next_state;

 always @* // Next-state logic
case (current_state)

 step1: if (!input_rdy) next_state = step1;
 else next_state = step2;
 step2: next_state = step3;
 step3: next_state = step4;
 step4: next_state = step5;
 step5: next_state = step1;

endcase

 always @* begin // Output_logic
 a_sel = 1'b0; b_sel = 1'b0; pp1_ce = 1'b0; pp2_ce = 1'b0;
 sub = 1'b0; p_r_ce = 1'b0; p_i_ce = 1'b0;
 case (current_state)
 step1: begin
 pp1_ce = 1'b1;
 end

(continued)

184 C H A P T E R F O U R s e q u e n t i a l b a s i c s

The first always block models the state storage for the finite-state machine.
It is based on the template for a register with asynchronous reset. When the
reset input is active, the block resets the current state to the initial state, step1.
Otherwise, on a rising clock edge, the block updates the current state with the
computed next state.

The next state is computed by the second always block, which models the transi-
tion function of Table 4.2. The statement inside the block is a case statement.
It uses the value of the current_state variable to choose among alternatives for
updating next_state. The alternative for step1 uses a nested if statement to
determine whether to proceed to step2 or stay in step1, depending on the value
of input_rdy. All other alternatives simply advance the state unconditionally.

The output values are computed by the third always block, which models the
output function of Table 4.1. This block also includes a case statement that
chooses alternatives for assigning values to the outputs depending on the value of
current_state. Rather than including an assignment for every output in each alter-
native of the case statement, we precede the case statement with a default assign-
ment of 0 for each output, and only include overriding assignments of 1 in those
alternatives where they are required. This style for modeling the output function
usually makes the always block more succinct, and helps to avoid inadvertent
introduction of latches due to omission of an output assignment in an alternative.

State Transition Diagrams

A state transition diagram is an abstract diagrammatic representation of a
finite-state machine. It uses a circle, or “bubble,” to represent each state.
Directed arcs between state bubbles represent transitions from one state
to another. An arc may be labeled with a combination of input values

 step2: begin
 a_sel = 1'b1; b_sel = 1'b1; pp2_ce = 1'b1;
 end
 step3: begin
 b_sel = 1'b1; pp1_ce = 1'b1;
 sub = 1'b1; p_r_ce = 1'b1;
 end
 step4: begin
 a_sel = 1'b1; pp2_ce = 1'b1;
 end
 step5: begin
 p_i_ce = 1'b1;
 end
endcase

end

that allow the transition to occur. To illustrate, Figure 4.32 shows a state
 transition diagram for a finite-state machine with states s1, s2 and s3.
Each arc is labeled with the values of two inputs, a1 and a2, that are
required for the transition. Thus, when the finite-state machine is in state
s1 and the inputs are both 1, the state of the machine in the next clock
cycles is s3. If the machine is in state s1 and both inputs are 0, the machine
stays in state s1. From state s1, if the inputs are 0 and 1, or 1 and 0, the
machine transitions to state s2. Note that we have omitted a label on the
arc from s2 to s3. This is a common convention to indicate an uncondi-
tional transition; that is, when the machine is in state s2, the next state
is s3 regardless of the input values. Another important point is that all
possible combinations of input values are accounted for in each state,
and that no combination is repeated on more than one arc from a given
state.

A bubble diagram may also be labeled with the values of outputs.
Since Moore-machine outputs depend only on the current state, we attach
the labels for such outputs to the state bubbles. This is shown on the aug-
mented bubble diagram in Figure 4.33. For each state, we list the values
of two Moore-style outputs, x1 and x2, in that order.

Mealy-machine outputs, on the other hand, depend on both the cur-
rent state and the current input values. Usually, the input conditions are
the same as those that determine the next state, so we usually attach
Mealy-output labels to the arcs. This does not imply that the outputs
change at the time of the transition, only that the output values are driven
when the current state is the source state of the arc and the input val-
ues are those of the arc label. If the inputs change while in the source
state, the outputs change to those listed on some other arc labeled with

 4.3 Sequential Datapaths and Control C H A P T E R F O U R 185

s1 s2

s3

0, 0

0, 0

0, 1

1, 0

0, 1

1, 0

1, 1

1, 1

F I G U R E 4 .32 A state
transition diagram.

s1 s2

s3

0, 0 / 0, 0, 0
1, 0 0, 0

0, 1

0, 0 / 0, 0, 0

0, 1 / 0, 1, 1

/ 0, 1, 1

1, 0 / 1, 0, 0

0, 1 / 0, 1, 1

1, 0 / 1, 0, 0

1, 1 / 1, 1, 1

1, 1 / 1, 1, 1

F I G U R E 4 .33 A state
transition diagram augmented with
Moore- and Mealy-style output
values.

186 C H A P T E R F O U R s e q u e n t i a l b a s i c s

the new input values. Mealy-style outputs are also shown on the arcs in
Figure 4.33. In each case, the output values are listed after the “/” in the
order y1, y2 and y3.

example 4 .18 Draw a state transition diagram for the fi nite-state
machine of Example 4.16. Include the output values in the order of their occur-
rence in Table 4.1.

solut ion The diagram is shown in Figure 4.34. There is a transition
from step1 to step2 that occurs when input_rdy is 1, and a transition from
step1 back to itself when input_rdy is 0. All other transitions are uncondi-
tional. Since it is a Moore machine, the output values are all drawn in the state
bubbles.

In many applications, a state transition diagram is a useful notation,
since it graphically conveys the control organization of a sequential design.
Many CAD tools provide graphical editors for entering state transition
diagrams, and can automatically generate Verilog code for simulation
and synthesis. The disadvantage of the notation is that the annotations
of input conditions and output values can clutter the diagram, obscuring
the control organization. Also, for large and complex state machines, the
diagram can become unwieldy. In those cases, a Verilog model in textual
form may be more intelligible. Ultimately, since state transition diagrams
and Verilog models of state machines encapsulate the same information,
it is a question of personal preference or project guidelines that determine
the method to use.

1. What is the purpose of the datapath in a digital system?

2. What is the purpose of the control section in a digital system?

3. What are control signals and status signals?

4. What is the distinction between a Moore and a Mealy fi nite-state
machine?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

step1
0, 0, 1, 0, –, 0, 0

0
1 step2

1, 1, 0, 1, –, 0, 0

step4
1, 0, 0, 1, –, 0, 0

step5
–, –, 0, 0, 0, 0, 1

step3
0, 1, 1, 0, 1, 1, 0

F I G U R E 4 .3 4 State transition
diagram for the complex multiplier.

