
C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Resources:
• A good reference for getting started is:

� Programming in AVR assembler language: *** Commands sorted by function,
Commands sorted by alphabet, Ports, Abbreviations

� http://www.avr-asm-tutorial.net/avr_en/beginner/COMMANDS.html

� Beginners Programming in AVR Assembler - many topics and tables
� http://www.avr-asm-tutorial.net/avr_en/beginner/index.html

� Beginners Introduction to the Assembly Language of ATMEL-AVR-Microprocessors
by Gerhard Schmidt

� http://www.avr-asm-download.de/beginner_en.pdf

� AVR-Assembler-Tutorial Learning AVR Assembler with practical examples
� http://www.avr-asm-tutorial.net

• User Guides:
� AVR Assembler User Guide – *** a good, complete list of Assembler commands

� www.atmel.com/Images/doc1022.pdf

� AVR Assembler2 User's Guide
� www.ic.unicamp.br/~celio/mc404.../avrassembler2-addendum.pdf

� AVR Assembler Help
� http://proton.ucting.udg.mx/tutorial/AVR/index.html

• Subroutines
� Writing subroutines: After completing this tutorial readers should be able to: -Give a

definition for the term subroutine -Write an assembly subroutine -Discuss the usefulness
of macros.

� http://www.avr-tutorials.com/assembly/writing-assembly-subroutines-avr-microcontroller

Slide: 1

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Useful Assembler Features:

• The Assembler supports a
number of directives. The
directives are not translated
directly into opcodes. Instead,
they are used to adjust the
location of the program in
memory, define macros, initialize
memory and so on. An nearly
complete overview of the
directives is given in the table at
the right. The commands
highlighted in blue are discussed
on the following slides…

• These exerts taken from:
� http://support.atmel.no/knowledge

base/avrstudiohelp/mergedProject
s/AVRASM/Html/directives.html

Slide: 2

Directive Description

BYTE Reserve byte to a variable

CSEG Code Segment

CSEGSIZE Program memory size

DB Define constant byte(s)

DEF Define a symbolic name on a register

DEVICE Define which device to assemble for

DSEG Data Segment

DW Define Constant word(s)

ENDM, ENDMACRO EndMacro

EQU Set a symbol equal to an expression

ESEG EEPROM Segment

EXIT Exit from file

INCLUDE Read source from another file

LIST Turn listfile generation on

LISTMAC Turn Macro expansion in list file on

MACRO Begin Macro

NOLIST Turn listfile generation off

ORG Set program origin

SET Set a symbol to an expression

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Useful Assembler Features:

• EQU - Set a symbol equal to a constant expression
� The EQU directive assigns a value to a label. This label can then be

used in later expressions. A label assigned to a value by the EQU

directive is a constant and can not be changed or redefined.

Syntax:
.EQU label = expression

Example:
.EQU io_offset = 0x23

.EQU porta = io_offset + 2

.CSEG ; Start code segment

clr r2 ; Clear register 2

out porta,r2 ; Write to Port A

Slide: 3

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Useful Assembler Features:

• SET - Set a symbol equal to an expression
� The SET directive assigns a value to a label. This label can then be used

in later expressions. While the function is very much like .EQU, it is

different from the .EQU directive - because a label assigned to a value

by the SET directive can be changed (redefined) later in the program.

Syntax:
.SET label = expression

Example:
.SET FOO = 0x114 ; set FOO to point to an SRAM

; location

lds r0, FOO ; load location into r0

.SET FOO = FOO + 1 ; increment (redefine) FOO. This

; would be illegal if using

; .EQU

lds r1, FOO ; load next location into r1

Slide: 4

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Useful Assembler Features:

• DEF -Set a symbolic name on a register
� The DEF directive allows the registers to be referred to through

symbols. A defined symbol can be used in the rest of the program to

refer to the register it is assigned to. A register can have several

symbolic names attached to it. A symbol can be redefined later in the

program.

Syntax:
.DEF Symbol=Register

Example:
.DEF temp=R16

.DEF ior=R0

.CSEG

ldi temp,0xf0 ; Load 0xf0 into temp register

in ior,0x3f ; Read SREG into ior register

eor temp,ior ; Exclusive or temp and ior

Slide: 5

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Useful Assembler Features:

• MACRO - Begin macro
� The MACRO directive tells the Assembler that this is the start of a Macro.

The MACRO directive takes the Macro name as parameter. When the name
of the Macro is written later in the program, the Macro definition is
expanded at the place it was used. A Macro can take up to 10 parameters.
These parameters are referred to as @0-@9 within the Macro definition.
When issuing a Macro call, the parameters are given as a comma separated
list. The Macro definition is terminated by an ENDMACRO directive.

� By default, only the call to the Macro is shown on the listfile generated by
the Assembler. In order to include the macro expansion in the listfile, a
LISTMAC directive must be used. A macro is marked with a + in the
opcode field of the listfile..

Syntax:
.MACRO macroname

Example:
.MACRO SUBI16 ; Start macro definition
subi @1,low(@0) ; Subtract low byte
sbci @2,high(@0) ; Subtract high byte
.ENDMACRO ; End macro definition
.CSEG ; Start code segment
SUBI16 0x1234,r16,r17 ; Sub.0x1234 from r17:r16

Slide: 6

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Additional Macro Resources:

• Macros
� Macros in AVR Assembler: Macros are a good way to make code

more readable (if it contains code that is often reused or if a lot of 16-bit

calculations are done). Macros in AVR assembler can be defined

anywhere in the code as long as they're created before they are used.

They must take arguments which are replaced during assembly. They

cannot be changed during runtime. The arguments are used in the form

@0 or @1 (while 0 or 1 are the argument numbers starting from 0). The

arguments can be almost everything the assembler can handle: integers,

characters, registers, I/O addresses, 16 or 32-bit integers, binary

expressions...
� http://www.avrbeginners.net/assembler/macros.html

� A very handy set of more advanced macros posted on a forum
� http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=

101529

Slide: 7

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

#define to create a preprocessor function:

• Defining a preprocessor function-style macro "functions" using
preprocessor directive #define

; bit mask macro identical to EXP2(),note use of shift operator

#define BITMASK(X) (1<<X)

#define BITMASK3(X1,X2,X3) (BITMASK(X1)+BITMASK(X2)+BITMASK(X3))

• Built-in functions for use in expressions – The following functions
are defined; ‘built-in’ for the programmer’s use

� http://www.atmel.com/Images/doc1022.pdf#page17

� LOW (expression) returns the low byte of an expression
� HIGH (expression) returns the second byte of an expression
� BYTE2 (expression) is the same function as HIGH
� BYTE3 (expression) returns the third byte of an expression
� BYTE4 (expression) returns the fourth byte of an expression
� LWRD (expression) returns bits 0-15 of an expression
� HWRD (expression) returns bits 16-31 of an expression
� PAGE (expression) returns bits 16-21 of an expression
� EXP2 (expression) returns 2^expression
� LOG2 (expression) returns the integer part of log2(expression)

Slide: 8

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

#define to create a preprocessor function:

• Additional built-in functions are added in an addendum:
� http://www.ic.unicamp.br/~celio/mc404-2008/docs/avrassembler2-

addendum.pdf#page176

� INT(expression) Truncates a floating point expression to integer (ie

discards fractional part)

� FRAC(expression) Extracts fractional part of a floating point expression

(ie discards integer part).

� Q7(expression) Converts a fractional floating point expression to a form

suitable for the FMUL/FMULS/FMULSU instructions. (sign + 7-bit

fraction)

� Q15(expression) Converts a fractional floating point to the form

returned by the FMUL/FMULS/FMULSY instructions (sign + 15-bit

fraction).

� ABS(expression) Returns the absolute value of a constant expression.

Slide: 9

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Stack and Functions:

• Using functions requires the stack. Using the stack requires that

the stack pointer be initialized.

• The following code shows how to initialize the stack pointer:
.DEF SomeReg = R16

LDI SomeReg, HIGH(RAMEND) ; upper byte

OUT SPH,SomeReg ;

LDI SomeReg, LOW(RAMEND) ; lower byte

OUT SPL,SomeReg ;

• Then, commands such as the following may be used:
PUSH SomeReg

POP SomeReg

RCALL SomeLabel

RET

Slide: 10

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Function Example:
• The following AVR assembly program toggles the logic value on the pins of

portB of an ATMega8515 AVR microcontroller with a delay after each change.
Here the delay is provided by the "Delay"subroutine.

.include"m8515def.inc"
;Initialize the microcontroller stack pointer
LDI R16,low(RAMEND)
OUT SPL,R16
LDI R16,high(RAMEND)
OUT SPH,R16

;Configure portB as an output port
LDI R16,0xFF
OUT DDRB,R16

;Toggle the pins of portB
LDI R16,0xFF
OUT PORTB,R16
RCALL Delay
LDI R16,0x00
OUT PORTB,R16
RCALL Delay

;Delay subroutine
Delay: LDI R17,0xFF
loop: DEC R17

BRNE loop
RET

Slide: 11

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

ASM Example Setting IO with different access methods:
• The following AVR assembly program toggles the logic value on the pins of portB of an ATMega8515 AVR

microcontroller with a delay after each change. Here the delay is provided by the "Delay“ subroutine.

;.INCLUDE "m169Pdef.inc“

.ORG 0x00000

;compute memory mapped io address
.EQU io_offset = 0x20
.EQU PORTA_MM = io_offset + PORTA ; PORTA is 0x02

;set i/o bits using i/o register direct commands(cannot be used w/ ext. i/o regs)
SBI PORTA, 6 ;set bit I/O using bit number
CBI PORTA, 6 ;clear bit I/O
SBI PORTA, 5 ;set bit I/O

;clear bit I/O using indirect access
LDI ZL, low(PORTA_MM) ;load immediate to register
LDI ZH, high(PORTA_MM) ;low() and high() byte macros provided automatically
LD R16, Z ;load indirect from memory to reguster R16 using memory address

; R31,R30
CBR R16, EXP2(7) ;clear bitS in register requires mask instead of a bit number
ST Z, R16 ;store indirect to memory address R31,R30 from reguster R16

;set bit I/O using indirect access
LDI ZL, low(PORTA_MM)
LDI ZH, high(PORTA_MM)
LD R16, Z
SBR R16, EXP2(7)
ST Z, R16

;clear bit I/O using direct (memory) access
LDS R16 , PORTA_MM
CBR R16, EXP2(6)
STS PORTA_MM, R16

;set bit in I/O using direct (memory) access
LDS R16 , PORTA_MM
SBR R16, EXP2(7)
STS PORTA_MM, R16

Slide: 12

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Implementing Delays:
• Some options for implementing delays:

� Create a loop

ldi RTEMP, 255 ; 255 could also be a variable here
the_delay:
dec RTEMP
brne the_delay;

� Use a few nop instructions

nop ; 1 clock
nop ; 1 clock
nop ; 1 clock

� A combination for longer delay

ldi RTEMP, 255 ; 255 could also be a variable here
the_delay:
nop
nop
nop
nop
nop
dec RTEMP
brne the_delay

Slide: 13

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Implementing Delays:
• Additional options for implementing delays:

� Create loops within loops
; outer loop
ldi RTEMPB, 255 ; 255 could be a variable so the ; inner loop
sets the delay step size
outer_delay:
; inner loop
ldi RTEMPA, 122 ;
inner_delay:
nop
nop
nop
nop
nop
dec RTEMPA
brne inner_delay
dec RTEMPB
brne outer_delay

� Using double-word operations for longer delays
LDI 25, 0x01 //high
LDI 24, 0xFF //low
Loop:
SUBIW R25:R24, 1
BRNE Loop

Slide: 14

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Implementing Delays:

• In case it wasn't obvious, these types of software delays are

dependent on the CPU clock frequency.

• Note on delays using nops: there may be some productive

work that can be done instead of using nops... maybe you can

check button status while implementing a delay for blinking an

LED. Replace the nops with productive instructions.

• More convenient precise delays use hardware timers, but we

will learn that later.

Slide: 15

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Jumping based on single register bits:

• Conditional Jumps
� SBIC - Skip if Bit in I/O Register Cleared

� SBIS - Skip if Bit in I/O Register Set

� SBRC - Skip if Bit in Register Cleared

� SBRS - Skip if Bit in Register Set

• Unconditional jumps
� RJMP k :

� Program execution continues at address PC + k + 1.

� 2 clock cycles.

� The relative address k is from -2048 to 2047 (12 bits).

� JMP k:
� Program execution continues at address k

� 3 clock cycles

� Can jump anywhere

Slide: 16

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Jumping based on single register bits:

• Combining conditional Jumps with Unconditional Jumps

.def = JOYSTICK_INPORT = PINB

.equ UP_BUTTON_BIT = 5;

.equ UP_BUTTON_MASK = (1<<UP_BUTTON_BIT);

.equ UP_BUTTON_MASK_CMP = (0xFF -UP_BUTTON_MASK);

.def RTEMP = r16

;skip if bit in register set followed by branch

; - branch occurs if button was pressed

sbis JOYSTICK_PORT, UP_BUTTON_BIT

rjmp somewhere

Slide: 17

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Jumping based on single register bits:

• In comparison

in RTEMP, JOYSTICK_PORT

andi RTEMP, UP_BUTTON_MASK

brne somewhere

• Example: waiting on a bit to change to a 1

back_here: SBIS PINB, 0

rjmp back_here

<some other code>

• How to check on or wait for one of multiple bits?
� Not as simple, but that is HW

� Hint:

.equ BUTTON_CHECK_MASK = (UP_BUTTON_MASK + DOWN_BUTTON_MASK)

Slide: 18

C Programming &
Embedded Systems

CMPE 311More AVR Assembler

Serial Code Using Function Call: asm

Slide: 19

