
Many important items from the forward were covered•

A microprocessor is interfaced to a bus or busses corresponding to control signals, address signals,
and data signals, collectively called the system bus.

•

firmware is the program the microprocessor runs. Typically, it is stored in a ROM. The instruction
cycle includes fetching, decoding, and execution of instructions stored in the ROM.

•

Upon boot-up, an instruction is fetched from a predetermined address. After every instruction, the
instruction address must be updated by increment or jump. The instruction address is stored in a
register called a program counter (PC).

•

The set of instructions the microprocessor can decode and execute is called the instruction set.•
An embedded system program is typically designed to run continuously rather than execute and

terminate with some result
•

Since crashing without automated recovery is typically not tolerated, a watchdog timer is a
regular component in an embedded system. A watchdog timer's role is to detect system hang-
up and issue a system reset signal after a predetermined amount of time. This automatic
reset is avoided under normal operation by having the system software periodically reset the
watchdog timer. A failure of the software to reset the watchdog timer in the allowed time
span implied that a hang-up has occurred.

○

Watchdog Timer•

Real-Time operation is a typical constraint on an embedded system /software. Concept based on
meeting predetermined timing constraints rather than just executing as fast as possible.

•

Soft Real-Time: not meeting timing constraints represents degraded performance•
Hard Real-Time: not meeting timing constraints represents failure•
Firm Real-Time: has a mixture of soft and hard constraints for various tasks•
Many real-time systems require definition, treatment/management, and management of formal
tasks and processes (will formalize these later in the course)

•

Need to develop methods for task cooperation to work together in a coordinated fashion and task
communication to share data

•

Polling or event-driven schemes can define the management and execution of processes and define
how to interface with the external world

•

Will learn the role of operating systems to facilitate these•

input•
output•
memory•
datapath•
control•
software•
firmware•
CPU•
bus, busses•
address signals•
data signals•
control signals•
bits•

Computer System Vocabulary:

You are required to study the text for full definitions and explanations.

CH1 and Review

 Lecture Fall2013 Page 1

bits•
signal width•
bus width•
address bus•
data bus•
control bus•

registers•
internal registers•
firmware•
datastore•
ROM•
RAM•
word size•
Microcomputer: complete computer systems that uses a microprocessor, though not typically

referring to a mainframe
•

Microcontroller: integrates, memory, IO, communications, and other peripherals and peripheral

interfaces
•

DSP: digital signal processor, microprocessor with special hardware and optimized for signal

processing, typically lower cost and power for signal processing applications as compared to
general
purpose processor. Typically Harvard rather than von Neumann, so separate memory and
busses for
data and program

•

Microprocessor Vocabulary:

Flop-flops are typically edge-triggered, updates synchronized to a sync. signal called a clock. The
timing of input capture and output updates is determined by the occurrence of clock edge

•

Latches outputs can respond immediately to data input changes, though involve an enable signal
that is typically level-sensitive

•

"register" typically refers to a multi-bit flip-flop•

Flip-flop vs register vs latch

A collection of bits has no inherent meaning. The meaning comes from the interpretation and that
is defined by the data-type and its storage specification

•

Binary

One's complement (negation: INVERTED BITS, MSBit is sign bit)

Two's complement (negation: INVERTED BITS + 1 , MSBit is sign bit)


Signed Binary Number Representations○

Binary Number Representation•

Endianness
"endianness" describes how to interpret and manipulate data, it is the order of bits or bytes in
a word

•

MSB down to LSBit

Big Endian 31 ... 0 Most significant bit first, or leftmost;
least significant bit last, or rightmost

•

Numbers

 Lecture Fall2013 Page 2

LSB up to MSBit

Little Endian 0 ... 31 Least significant bit first, or leftmost;
most significant bit last, or rightmost

•

May specify order stored in registers, order in memory, order of bits or bytes sent over a
communication channel like a serial port

•

again, pay attention to word order versus bit order, can be least significant bit first and most
significant byte first

•

Number of Bits of Resolution (updated)

is the number of levels that can be represented○

3 bits of resolution means 2^3 unique levels can be represented

can be given as the # of digits (bits if binary)○

Real numbers must be rounded/truncated or otherwise mapped to one of these discrete
and countable number of levels. The mapping is called quantization.

○

Number of bits of resolution relates to the amount of precision and range•

Addition: error of operands adds○

Multiplication: error of operands multiply ○

Error Propagation (possibly more on this later)•

Address (noun): value used to indicate position in an array•
Instructions: used to indicate actions•
Operands provide parameters for action•

e.g. y+z ; addition here is binary operator○

Example references to arity: Unary operator, two-operand instruction, two-address
instruction

○

Has two sources or source addresses□
Has one destination or destination address□

x=y+z is a three-operand or three-address instruction

Example:○

Arity refers to the number of operands an instruction or operation requires•

Typically instructions are encoded using a concatenation of fields (groups of bits with
associated meaning)

•

Common to have operation or op-code fields concatenated with source and/or destination
fields

•

Bit 31 ……………………...bit 0

operation or opcode | operand
operation | op0 | op1
operation op2 | op1 |op1

•

Operands may refer to registers or other memory (or other addresses if using memory-
mapped I/O)

•

In most systems, if an operand is memory location the contents must be moved to registers to
perform the computations

•

RISC (Reduced Instruction Set Computers) require fewer bits for the op-code (leaves
more bits for operands)

○

CISC (Complex Instruction Set Computers) require more bits for the op-code (leaves
less bits for operands)

○

Opcode design•

Instruction Set Architecture (ISA) is the interface provided/presented to the •

Instructions

 Lecture Fall2013 Page 3

Instruction Set Architecture (ISA) is the interface provided/presented to the
programmer/compiler. It is everything that documents the use of the processor but not
necessarily the internal details that are of no consequence to the programmer/compiler.
Includes specification of op-codes, registers, operand formats, memory access methods, etc...

•

Machine Language: collections of 0's and 1's that tell the computer what to do, op-codes and
operands

•

Assembly Language: programmers create code with instructions chosen from the supported
instruction set

•

Compiler converts this to machine code -- not quite 1-to-1 mapping to machine code but
there is a very strong connection from architecture through machine language specification
to assembly language and the ISA.

We can see "add" requires two operands, in this case we expect reg1 is a source
and a destination. Which forms are supported in the assembly language usually
relate to what hardware features are available and what machine code operations
are supported. (some might support only reg operands, so the last operation would
require a load of const1 to a register first)

Ex: add reg1 reg1
add reg1 memaddress1
add reg1 const1

Compiled Code: high-level code is converted to assembly through compilation and then to
machine code, in contrast to interpreted code

•

High-Level such a C -> [Compiler] -> Assembly Code -> [Assembler] -> Machine Code

We will discuss the various common types of instructions. Though they vary from processor to
processor, the similarities make learning one after another fairly painless.

•

Common Instruction Types:•

Data transfer1) transfer and store data

Control Flow2) Make decisions (based on provided operands or based on "side effect "
from another operation (type 1 or 2) or based on a status register byte or
bit)

Arithmetic and
Logic

3) Operate on data

•

register,○

a memory location, ○

or an input or output port○

The source and destination can be a•

"add a 4" ("a=a+4") : 4 is the immediate data provided in the assembly and machine
code



Immediate - data is provided in instruction or operand is the data○

(updated) I write your grade on board in a room. You want the data. I provide you the
room number. The room number is like the direct operand.



Direct - operand provided by the address in memory of data where the data is stored (or to be
stored) instead of the data itself

○

(updated) In the previous example, I instead provide you a web page address where the
room number will be posted.



(updated) With indirect, the location of the information (the grade) itself can change,
but you still start in the same place to find it. In the previous example, I can move the



Indirect - operand provides address in memory of the address in memory where the data is
stored (or to be stored) in memory

○

Addressing mode determines how to interpret the value provided by the operands. The addressing
mode can be specified by the opcode (different op-code for every address mode) or specified by a
prepending data field in the operands

•

Instruction Set -- Instruction Types

 Lecture Fall2013 Page 4

but you still start in the same place to find it. In the previous example, I can move the
grades to another room and change the webpage.

Register direct - operand indicates which register the data is in or which register the result
should be stored in

○

Register indirect - operand indicated which register contains the source/destination address of
the data in memory

○

Indexed Mode - like indirect but address spilt into base and offset and are provided by two
separate operands. This is convenient for working with (large) data arrays.

○

Program counter relative mode - program counter relative addressing is typically used for
flow controls (jumps/branches). Operand is typically signed is added to the P.C. to generate a
new instruction address

○

Load, LD - move data from memory to register□

Store, ST - move data from register to memory□

STI, LDI - store immediate value to memory or register□

MOVE - move data between registers or between memory locations (really a
copy)

□

Exchange, XCH - exchange data in operands□

PUSH/POP - stack manipulation□

IN/OUT - transfer data to or from an input/output port□

Typical Types:

These instructions require data or location of data. They move or modify memory. ○

Data Transfer•

Sequential: default describes using a series of instructions with PC auto incrementing by
some amount based on the instruction length/size



P.C. modified based on operands or contents of flag/status registers (or bits of).
Includes some type of test

□

Common Tests□

E,NE Equality, inequality

Z,NZ Zero, not zero

GT,GE >,>=

LT,LE <,<=

V overflow

C,NC Cary, no carry

N negative

□

 BR addess◊

Unconditional: 

 BE adddress BNE address◊

 also BZ, BNZ, BGT,etc….◊

Conditional: 

Typical branching instructions: □

Absolute, PC = something (operand size must support entire program
address space)



Relative, PC = PC + something (supports jumps with smaller operands)

Jumping can be □

If-else example□
 dec r0

 bz _if_label_

Branch: decision-based flow: if, else, switch, case, etc..

Flow concepts:○

Execution Flow and Flow Control Instructions•

 Lecture Fall2013 Page 5

 ldi r1,0

 br _endif_label_

 _if_label_:

 ldi r1, 10

 _endif_label_:

 ...

Structure: Entry Decision/Condition, Exit decision/condition, loop body code○

○

Loop - construct used to run a block of code repeatedly•

Repeat - repeat predetermined number of times•
While - entry decision and exit decision (in code implementation, both may be coded in the
same line)

•

Do, do While - no entry decision, runs at least once•
For - uses explicit iteration variable that can be used in the code•

I expect everyone knows stack, top of stack, push, pop○

At the low-level, stacks are often implemented in a allocated memory array/block with
a stack pointer that tracks the top of the stack

○

○

Stacks and Procedures / Functions•

Types of Loops

Use stack in memory○

Push next instruction address into stack or store in memory so we can return to the
point just after the call in the code



Push parameters

Set PC to start of function/procedure code

Pop parameters

if returning values using stack, must pop instruction address and save in
register/memory since return values will bury the return address



Process of a function or procedure call (refer to text for complete descriptions)○

Procedures and Functions

 Lecture Fall2013 Page 6

register/memory since return values will bury the return address
Do procedure/function work

Push return values if function

Set PC based on saved instruction address if a or pop off stack

Continue execution after original calling point

Example on Page 30○

Supported through CALL and RET assembly statements○

Arithmetic Operations○

add, sub, mul, div ○

addc - add with carry also adds carry bit, supporting long additions) ○

subb - subtract with borrow uses status register/bit to support long subtractions)○

inc,dec ○

Comparison Instructions in Intel ASM
test arg2, arg1 - Performs a bit-wise AND on the two operands and sets the flags, but does not store
a result.
cmp arg2, arg1 - Performs a subtraction between the two operands and sets the flags, but does not
store a result.

test - operand(s) tested and results affect status flags but result not saved to registers○

testset - atomic test and set (will learn about atomic operations later)○

Bitwise operations , e.g. and,or,xor, not or inv○

set and clear bits in registers, e.g. CLR, SET ○

set and clear bits in status registers, e.g. CLRC, SETC○

Logic Operations•

Types: logical, arithmetic (sometimes called a signed shift), rotate○

Fills on left with 0's, discards bits shifted out on right□

□

SHR

Fills on right with 0's, discards bits shifted out on left□

SHL

Logical○

May affect some flags like overflow and underflow

Fills on left with copies of original sign, preserving the sign of the operation.
Discards bits shifted out on right

□

□

Can almost mimick integer divide by power of two except result is rounded
towards negative infinity instead of 0, so it is the same for positive numbers but
slightly different for negative numbers (-1 shifted right arithmetically by 1 is -1
instead of 0)

□

SHRA

same as SHL but may affect status flags□

can mimick mult by power of two □

SHLA

Arithmetic○

Rotate

Shift Operations:•

Arithmetic and Logic Operations

 Lecture Fall2013 Page 7

○

No bits discards, instead they are used to fill other end

□

 ROR

ROL

Rotate

Note, the number of clock cycles required per instruction depends on processor hardware and the
operation being performed

•

Hardware circuit implementing processor must support fetch, decode, execute, next cycle of code
execution and all supported instructions

•

Most digital systems fit into this framework:

Fetch○

Decode○

Execute (compute, set)○

Next (set next instruction address)○

Components and interconnections must support the instruction cycle•

Size and number of decoders, buses, arithmetic circuits, registers, etc. all relate to the
supported instruction set

○

Instruction set determined and limited by hardware design•

A microprocessor:

 Lecture Fall2013 Page 8

