More on Parallelism



Limitations of ILP: Inspite of all the hardware and software techniques employed
to exploit ILP, there is a limit to how much we can exploit ILP. First of all, there is a
limitation with the hardware that we use. The number of virtual registers that we ac-
tually have is limited, not infinite, to do the renaming process. The branch predictors
and jump predictors that we use may not be perfect. Similarly, we may not be able to
resolve memory address disambiguities always. In short, we do not have an idealistic
processor, limited only by true data dependences and without any control, WAR and
WAW hazards.

Doubling issue rates above today’s 3-6 instructions per clock, say to 6 to 12 instruc-
tions, probably requires a processor to issue 3 or 4 data memory accesses per cycle,
resolve 2 or 3 branches per cycle, rename and access more than 20 registers per cy-
cle, and fetch 12 to 24 instructions per cycle. The complexity of implementing these
capabilities is likely to mean sacrifices in the maximum clock rate. For example, one of
the widest issue processors is the Itanium 2, but it also has the slowest clock rate, de-
spite the fact that it consumes the most power. Most techniques for increasing per-
formance also increase the power consumption. Multiple issue processors techniques
all are energy inefficient. Issuing multiple instructions incurs some overhead in logic
that grows faster than the growth in issue rate. There is also a growing gap between
the peak issue rates and sustained performance, which leads to increasing energy per
unit of performance.



Exploiting other types of parallelism: The above discussion clearly shows that ILP
can be quite limited or hard to exploit in some applications. More importantly, it may
lead to increase in power consumption. Furthermore, there may be significant paral-
lelism occurring naturally at a higher level in the application that cannot be exploited
with the approaches used to exploit ILP. For example, an online transaction process-
ing system has natural parallelism among the multiple queries and updates that are
presented by requests. These queries and updates can be processed mostly in paral-
lel, since they are largely independent of one another. This higher level parallelism is
called thread level parallelism because it is logically structured as separate threads of
execution. A thread is a separate process with its own instructions and data. A thread
may represent a process that is part of a parallel program consisting of multiple pro-
cesses, or it may represent an independent program on its own. Each thread has all
the state (instructions, data, PC, register state, and so on) necessary to allow it to exe-
cute. Unlike instruction level parallelism, which exploits implicit parallel operations
within a loop or straight-line code segment, thread level parallelism is explicitly rep-
resented by the use of multiple threads of execution that are inherently parallel.



Tread Level Parallelism

Thread level parallelism is an important alternative to instruction level parallelism,
primarily because it could be more cost-etfective to exploit than instruction level
parallelism. There are many important applications where thread level parallelism oc-
curs naturally, as it does in many server applications. Similarly, a number of applica-
tions naturally exploit data level parallelism, where the same operation can be per-
formed on multiple data. We shall discuss about exploiting data level parallelism in a
later module.



Since ILP and TLP exploit two different types of parallel structure in a program, it is
a natural option to combine these two types of parallelism. The datapath that has al-
ready been designed has a number of functional units remaining idle because of the
insufficient ILP caused by stalls and dependences. This can be utilized to exploit TLP
and thus make the functional units busy. There are predominantly two strategies for
exploiting TLP along with ILP - Multithreading and its variants, viz., Simultaneous
Multi Threading (SMT) and Chip Multi Processors (CMP). In the case of SMT, multiple
threads share the same large processor which reduces under-utilization and does ef-
ficient resource allocation. In the case of CMPs, each thread executes on its own mini
processor, which results in a simple design and low interference between threads. We
will discuss about both these approaches.



Multithreading: Multithreading allows multiple threads to share the functional
units of a single processor in an overlapping tashion. In order to enable this, the pro-
cessor duplicates the independent state of each thread — a separate copy of the regis-
ter file, a separate PC, and a separate page table. The memory itself can be shared
through the virtual memory mechanisms, which already support multiprogramming.
In addition, the hardware must support the ability to change to a different thread rel-
atively quickly; in particular, a thread switch should be much more efficient than a
process switch, which typically requires hundreds to thousands of processor cycles.



There are two main approaches to multithreading - Fine grained and Coarse
grained. Fine-grained multithreading switches between threads on each instruction,
causing the execution of multiple threads to be interleaved. This interleaving is nor-
mally done in a round-robin fashion, skipping any threads that are stalled at that time.
In order to support this, the CPU must be able to switch threads on every clock cycle.
The main advantage of fine-grained multithreading is that it can hide the throughput
losses that arise from both short and long stalls, since instructions from other threads
can be executed when one thread stalls. But it slows down the execution of the indi-
vidual threads, since a thread that is ready to execute without stalls will be delayed by
instructions from other threads.



Coarse-grained multithreading switches threads only on costly stalls, such as level
two cache misses. This allows some time for thread switching and is much less likely
to slow the processor down, since instructions from other threads will only be issued,
when a thread encounters a costly stall. Coarse-grained multithreading, however, is
limited in its ability to overcome throughput losses, especially from shorter stalls.
This limitation arises from the pipeline start-up costs of coarse-grain multithreading.
Because a CPU with coarse-grained multithreading issues instructions from a single
thread, when a stall occurs, the pipeline must be emptied or frozen and then fill in in-
structions from the new thread. Because of this start-up overhead, coarse-grained
multithreading is much more usetul for reducing the penalty of high cost stalls, where
pipeline refill is negligible compared to the stall time.



Simultaneous Multithreading: This is a variant on multithreading. When we only is-
sue instructions from one thread, there may not be enough parallelism available and
all the functional units may not be used. Instead, if we issue instructions from multi-
ple threads in the same clock cycle, we will be able to better utilize the functional
units. This is the concept of simultaneous multithreading. We try to use the resources
of a multiple issue, dynamically scheduled superscalar to exploit TLP on top of ILP.
The dynamically scheduled processor already has many HW mechanisms to support
multithreading -

e alarge set of virtual registers that can be used to hold the register sets of inde-
pendent threads

e register renaming to provide unique register identifiers, so that instructions from
multiple threads can be mixed in the data-path without confusing sources and
destinations across threads and

e out-ot-order completion that allows the threads to execute out of order, and get
better utilization of the HW.



Thus, with register renaming and dynamic scheduling, multiple instructions from

independent threads can be issued without regard to the dependences among them.

The resolution of the dependences will be handled by the dynamic scheduling capa-
bility. We need to add a renaming table per thread and keep separate PCs. The inde-

pendent commitment of each thread can be supported by logically keeping a separate
reorder buffer for each thread. Figure 24.1 shows the difference between the various

techniques.
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In the superscalar approach without multithreading support, the number of in-
structions issued per clock cycle is dependent on the ILP available. Additionally, a ma-
jor stall, such as an instruction cache miss, can leave the entire processor idle. In the
fine-grained case, the interleaving of threads eliminates fully empty slots. Because
only one thread issues instructions in a given clock cycle, however, ILP limitations still
lead to a significant number of idle slots within individual clock cycles. In the coarse-
grained multithreaded superscalar, the long stalls are partially hidden by switching to
another thread that uses the resources of the processor. Although this reduces the
number of completely idle clock cycles, within each clock cycle, the ILP limitations
still lead to idle cycles. Furthermore, in a coarse-grained multithreaded processor,
since thread switching only occurs when there is a stall and the new thread has a
start-up period, there are likely to be some fully idle cycles. In the SMT case, TLP and
ILP are exploited simultaneously, with multiple threads using the issue slots in a sin-
gle clock cycle. Ideally, the issue slot usage is limited by imbalances in the resource
needs and resource availability over multiple threads. In practice, other factors—in-
cluding how many active threads are considered, finite limitations on buffers, the
ability to fetch enough instructions from multiple threads, and practical limitations of
what instruction combinations can issue from one thread and from multiple threads—
can also restrict how many slots are used.



The other option that we need to discuss to exploit TLP and ILP is Chip Multi
Processors (CMPs). Instead of looking at a powertul processor that might be a dynam-
ically scheduled superscalar with support for speculation and also SMT, can we look
at a simpler processor, but multiples of them? That is what CMPs stands for - several
processors on a single chip. Each processor can individually support a thread of exe-
cution. Thus, with multiple processors, we have several threads of execution. These
processors can have both shared and distributed memory architectures and they may
be made up of both homogenous and heterogeneous processor types. Having several
processors on the same chip reduces the wire delays. Since the processors are just
replicated in most of the cases (homogenous), the very long design and verification
times needed for modern complicated processors is avoided. The difference between
an SMT processor and a CMP can be summarized as follows:



SMT versus CMT

e Simple Cores

o — Moderate amount of parallelism

SMT- o - Threads are running concurrently on different cores
e Chip Multiprocessors integrate multiple processor cores on a single chip
e Pool of execution units (wide machine)
e Several Logical processors

o — Copy of state for each of these logical processors

o — Multiple threads run concurrently

o - Better utilization and latency tolerance



* SMT

e Pool of execution units (wide machine)
e Several Logical processors

o — Copy of state for each of these logical processors
o — Multiple threads run concurrently
o - Better utilization and latency tolerance

* CMP

e Simple Cores

o — Moderate amount of parallelism
o - Threads are running concurrently on different cores
e Chip Multiprocessors integrate multiple processor cores on a single chip
e Reduces the hardware overhead.
* Reduces power consumption.
e CMP is an ideal platform to run multiprogrammed workloads or multithreaded
applications. However, CMP architecture may lead to resource waste if an appli-
cation cannot be effectively decomposed into threads or there is not enough TLP.



