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Example:

Note: This example is an oversimplification, but it generally conveys both the potential benefit and potential limits of the 

technique. 
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Exploring different level of parallelism

Instruction-level parallelism (ILP): how many 
of the operations/instructions in a computer 
program can be performed simultaneously
• 1. e = a + b

• 2. f = c + d

• 3. m = e * f

•1 and 2 can operate in parallel . 3 depends to 1 and 2.

A superscalar processor is a CPU that 
implements a form of parallelism called 
instruction-level parallelism within a 
single processor. It therefore allows faster 
CPU throughput (the number of instructions 
that can be executed in a unit of time) than 
would otherwise be possible at a given clock 
rate. Source: wiki

https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer_program
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Pipelining Execution: Single CPU
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Superscalar 2-issue pipleine
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Example for Thread Level Parallelism
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Explicit Thread Level Parallelism or 
Data Level Parallelism

Thread: process with own instructions 
and data
• thread may be a process part of a parallel program 

of multiple processes, or it may be an independent 
program

• Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to 
execute

Data Level Parallelism: Perform 
identical operations on data, and lots 
of data
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Thread Level Parallelism (TLP)

 ILP exploits implicit parallel operations 
within a loop or straight-line code 
segment

 TLP explicitly represented by the use of
multiple threads of execution that are 
inherently parallel

 Goal: Use multiple instruction streams to 
improve 
1.Throughput of computers that run many 

programs 

2.Execution time of multi-threaded programs

 TLP could be more cost-effective to 
exploit than ILP
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New Approach: Mulithreaded Execution

Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping
• processor must duplicate independent state of each thread 

e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table

•memory shared through the virtual memory mechanisms, 
which already support multiple processes

•HW for fast thread switch; much faster than full process 
switch  100s to 1000s of clocks

When switch?
•Alternate instruction per thread (fine grain)

•When a thread is stalled, perhaps for a cache miss, another 
thread can be executed (coarse grain)
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Fine-Grained Multithreading

Switches between threads on each 
instruction, causing the execution of 
multiples threads to be interleaved 

Usually done in a round-robin fashion, 
skipping any stalled threads

CPU must be able to switch threads every 
clock

Advantage is it can hide both short and long 
stalls, since instructions from other threads 
executed when one thread stalls 

Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads

Used on Sun’s Niagara
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Source of Underutilization

Stall or Underutilization:
• L1 cache miss (Data and Instruction)

• L2 cache miss

• Instruction dependency

• Long execution time operation, example: Divide

• Branch miss prediction



ECE611

Course-Grained Multithreading

Switches threads only on costly stalls, such as L2 
cache misses

Advantages 
•Relieves need to have very fast thread-switching

•Doesn’t slow down thread, since instructions from other 
threads issued only when the thread encounters a costly 
stall

Disadvantage is hard to overcome throughput 
losses from shorter stalls, due to pipeline start-up 
costs
• Since CPU issues instructions from 1 thread, when a stall 

occurs, the pipeline must be emptied or frozen 

•New thread must fill pipeline before instructions can 
complete 

Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of 
high cost stalls, where pipeline refill << stall time

Used in IBM AS/400
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Simultaneous Multi-threading ...
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M M FX FX FP FP BRCCCycle

One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
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Two threads, 8 units
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BTB and I-TLB
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Trace Cache

Rename/Alloc
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Thread 1: floating point

Without SMT, only a single 
thread can run at any given 

time
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Without SMT, only a single thread 
can run at any given time

BTB and I-TLB
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Thread 2:
integer operation
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SMT processor: both threads 
can run concurrently

BTB and I-TLB

Decoder

Trace Cache
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Uop queues

Schedulers

Integer Floating Point
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Thread 1: floating pointThread 2:
integer operation
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Simultaneous Multithreading (SMT)

Simultaneous multithreading (SMT): insight that 
dynamically scheduled processor already has 
many HW mechanisms to support multithreading
• Large set of virtual registers that can be used to hold the 

register sets of independent threads 

• Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath 
without confusing sources and destinations across threads

• Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

 Just adding a per thread renaming table and 
keeping separate PCs
• Independent commitment can be supported by logically 

keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999

“Compaq Chooses SMT for Alpha”
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 each color 
corresponds to a 
thread, example: 
Green, Yellow, 
Blue, Red all are 
threads.

 Important thing 
to watch in 
below only in 
SMT we are 
able to execute 
more than one 
thread at a 
time.
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Multi-core architectures
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Single-core computer
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Single-core CPU chip
the single core
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Multi-core architectures

New trend in computer architecture:
Replicate multiple processor cores on a single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip
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Multi-core CPU chip

The cores fit on a single processor socket

Also called CMP (Chip Multi-Processor)
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The cores run in parallel
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Within each core, threads are time-
sliced (just like on a uniprocessor)
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several 
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several 
threads

several 
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several 
threads
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Interaction with the
Operating System

OS perceives each core as a separate 
processor

OS scheduler maps threads/processes 
to different cores

Most major OS support multi-core today:
Windows, Linux, Mac OS X, …
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Why multi-core ?
Difficult to make single-core
clock frequencies even higher 

Deeply pipelined circuits:
•heat problems

•difficult design and verification
•large design teams necessary

•server farms need expensive
air-conditioning

Many new applications are multithreaded 

General trend in computer architecture 
(shift towards more parallelism)
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General context: 
Multiprocessors

Multiprocessor is any 
computer with several 
processors

SIMD
• Single instruction, multiple data

• Modern graphics cards

MIMD
• Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh 

supercomputing 
center

http://www.psc.edu/machines/tcs/lemieux.html
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Programming for multi-core

 Programmers must use threads or processes

Spread the workload across multiple cores

Write parallel algorithms

OS will map threads/processes to cores
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What happens if we run a program on a 
multi-core?

void

array_add(int A[], int B[], int C[], int length) 
{

int i;

for (i = 0 ; i < length ; ++i) {

C[i] = A[i] + B[i];

}

}

As programmers, do we care?

#1 #2
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What if we want a program to run on both 
processors?

 We have to explicitly tell the machine exactly how to do 
this

• This is called parallel programming or concurrent 
programming

 There are many parallel/concurrent programming models

•We will look at a relatively simple one: fork-join 
parallelism
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Fork/Join Logical Example

How good is this with caches?

1.Fork N-1 threads

2.Break work into N pieces (and do it)

3.Join (N-1) threads

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}
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How does this help performance?

 Parallel speedup measures improvement from 
parallelization:

time for best serial version

time for version with p processors

What can we realistically expect?

speedup(p)    =
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 In general, the whole computation is not 
(easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

In general, the whole computation is not (easily) parallelizable
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Reason #1: Amdahl’s Law

New Execution 

Time
=

1-s
+ s

P

New Execution 

Time
=

.9T
+ .1T =

3
Speedup =

 Suppose a program takes 1 unit of time to execute serially

 A fraction of the program, s, is inherently serial (unparallelizable)

 For example, consider a program that, when executing on one
processor, spends 10% of its time in a non-parallelizable region.
How much faster will this program run on a 3-processor system?

 What is the maximum speedup from parallelization? 
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Reason #2: Overhead

New Execution 

Time
=

1-s
+ s + overhead(P)

P

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

—Forking and joining is not instantaneous

• Involves communicating between processors

• May involve calls into the operating system
— Depends on the implementation


