
ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611

ECE611Slide source: https://www.cs.wustl.edu/~jain/cse567-11/ftp/multcore.pdf

Example:

Note: This example is an oversimplification, but it generally conveys both the potential benefit and potential limits of the

technique.

ECE611

Exploring different level of parallelism

Instruction-level parallelism (ILP): how many
of the operations/instructions in a computer
program can be performed simultaneously
• 1. e = a + b

• 2. f = c + d

• 3. m = e * f

•1 and 2 can operate in parallel . 3 depends to 1 and 2.

A superscalar processor is a CPU that
implements a form of parallelism called
instruction-level parallelism within a
single processor. It therefore allows faster
CPU throughput (the number of instructions
that can be executed in a unit of time) than
would otherwise be possible at a given clock
rate. Source: wiki

https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer_program

ECE611

Pipelining Execution: Single CPU

ECE611

Superscalar 2-issue pipleine

ECE611Slide source: https://www.cs.wustl.edu/~jain/cse567-11/ftp/multcore.pdf

ECE611

Example for Thread Level Parallelism

ECE611

Explicit Thread Level Parallelism or
Data Level Parallelism

Thread: process with own instructions
and data
• thread may be a process part of a parallel program

of multiple processes, or it may be an independent
program

• Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute

Data Level Parallelism: Perform
identical operations on data, and lots
of data

ECE611

ECE611

Thread Level Parallelism (TLP)

 ILP exploits implicit parallel operations
within a loop or straight-line code
segment

 TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

 Goal: Use multiple instruction streams to
improve
1.Throughput of computers that run many

programs

2.Execution time of multi-threaded programs

 TLP could be more cost-effective to
exploit than ILP

ECE611

New Approach: Mulithreaded Execution

Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping
• processor must duplicate independent state of each thread

e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

•memory shared through the virtual memory mechanisms,
which already support multiple processes

•HW for fast thread switch; much faster than full process
switch  100s to 1000s of clocks

When switch?
•Alternate instruction per thread (fine grain)

•When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

ECE611

Fine-Grained Multithreading

Switches between threads on each
instruction, causing the execution of
multiples threads to be interleaved

Usually done in a round-robin fashion,
skipping any stalled threads

CPU must be able to switch threads every
clock

Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

Used on Sun’s Niagara

ECE611

Source of Underutilization

Stall or Underutilization:
• L1 cache miss (Data and Instruction)

• L2 cache miss

• Instruction dependency

• Long execution time operation, example: Divide

• Branch miss prediction

ECE611

Course-Grained Multithreading

Switches threads only on costly stalls, such as L2
cache misses

Advantages
•Relieves need to have very fast thread-switching

•Doesn’t slow down thread, since instructions from other
threads issued only when the thread encounters a costly
stall

Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs
• Since CPU issues instructions from 1 thread, when a stall

occurs, the pipeline must be emptied or frozen

•New thread must fill pipeline before instructions can
complete

Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

Used in IBM AS/400

ECE611

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BRCCCycle

One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BRCCCycle
Two threads, 8 units

ECE611

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL
2
 C

a
ch

e
 a

nd
 C

on
tr

ol
B
us

Thread 1: floating point

Without SMT, only a single
thread can run at any given

time

ECE611
30

Without SMT, only a single thread
can run at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL
2
 C

a
ch

e
 a

nd
 C

on
tr

ol
B
us

Thread 2:
integer operation

ECE611
31

SMT processor: both threads
can run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL
2
 C

a
ch

e
 a

nd
 C

on
tr

ol
B
us

Thread 1: floating pointThread 2:
integer operation

ECE611

Simultaneous Multithreading (SMT)

Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading
• Large set of virtual registers that can be used to hold the

register sets of independent threads

• Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

• Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

 Just adding a per thread renaming table and
keeping separate PCs
• Independent commitment can be supported by logically

keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999

“Compaq Chooses SMT for Alpha”

ECE611

 each color
corresponds to a
thread, example:
Green, Yellow,
Blue, Red all are
threads.

 Important thing
to watch in
below only in
SMT we are
able to execute
more than one
thread at a
time.

ECE611

Multi-core architectures

ECE611

Single-core computer

ECE611

Single-core CPU chip
the single core

ECE611

Multi-core architectures

New trend in computer architecture:
Replicate multiple processor cores on a single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

ECE611

Multi-core CPU chip

The cores fit on a single processor socket

Also called CMP (Chip Multi-Processor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

ECE611

The cores run in parallel

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

thread 1 thread 2 thread 3 thread 4

ECE611

Within each core, threads are time-
sliced (just like on a uniprocessor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several
threads

several
threads

several
threads

several
threads

ECE611

Interaction with the
Operating System

OS perceives each core as a separate
processor

OS scheduler maps threads/processes
to different cores

Most major OS support multi-core today:
Windows, Linux, Mac OS X, …

ECE611

Why multi-core ?
Difficult to make single-core
clock frequencies even higher

Deeply pipelined circuits:
•heat problems

•difficult design and verification
•large design teams necessary

•server farms need expensive
air-conditioning

Many new applications are multithreaded

General trend in computer architecture
(shift towards more parallelism)

ECE611

General context:
Multiprocessors

Multiprocessor is any
computer with several
processors

SIMD
• Single instruction, multiple data

• Modern graphics cards

MIMD
• Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh

supercomputing
center

http://www.psc.edu/machines/tcs/lemieux.html

ECE611

Programming for multi-core

 Programmers must use threads or processes

Spread the workload across multiple cores

Write parallel algorithms

OS will map threads/processes to cores

ECE611 47

What happens if we run a program on a
multi-core?

void

array_add(int A[], int B[], int C[], int length)
{

int i;

for (i = 0 ; i < length ; ++i) {

C[i] = A[i] + B[i];

}

}

As programmers, do we care?

#1 #2

ECE611 48

What if we want a program to run on both
processors?

 We have to explicitly tell the machine exactly how to do
this

• This is called parallel programming or concurrent
programming

 There are many parallel/concurrent programming models

•We will look at a relatively simple one: fork-join
parallelism

ECE611 49

Fork/Join Logical Example

How good is this with caches?

1.Fork N-1 threads

2.Break work into N pieces (and do it)

3.Join (N-1) threads

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

ECE611 50

How does this help performance?

 Parallel speedup measures improvement from
parallelization:

time for best serial version

time for version with p processors

What can we realistically expect?

speedup(p) =

ECE611 51

 In general, the whole computation is not
(easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

In general, the whole computation is not (easily) parallelizable

ECE611

Reason #1: Amdahl’s Law

New Execution

Time
=

1-s
+ s

P

New Execution

Time
=

.9T
+ .1T =

3
Speedup =

 Suppose a program takes 1 unit of time to execute serially

 A fraction of the program, s, is inherently serial (unparallelizable)

 For example, consider a program that, when executing on one
processor, spends 10% of its time in a non-parallelizable region.
How much faster will this program run on a 3-processor system?

 What is the maximum speedup from parallelization?

ECE611

Reason #2: Overhead

New Execution

Time
=

1-s
+ s + overhead(P)

P

void

array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);

int i;

for (i = cpu_num ; i < length ; i += N) {

C[i] = A[i] + B[i];

}

join();

}

—Forking and joining is not instantaneous

• Involves communicating between processors

• May involve calls into the operating system
— Depends on the implementation

