What is concurrency?

e What s a sequential program?

= A single thread of control that executes one instruction and when it is
finished execute the next logical instruction

¢ What is a concurrent program?

= A collection of autonomous sequential threads, executing (logically) in
parallel

e The implementation (i.e. execution) of a collection of threads can be:
Multiprogramming
- Threads multiple:-: their executions on a single Processor.
Multiprocessing
- Threads multiplex their executions on a multipmcessnr or a multicore S‘_l,.fStEﬂ’l
Distributed Processing
- Processes multiple::: their executions on several different machines
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Concurrency and Parallelism

e Concurrency is not (only) parallelism

Apmn e — >
e |nterleaved Concurrency
. . : -- .- -----—- . ------2
= Logically simultaneous processing B >
= [nterleaved execution on a single cr-—---- . ------- L
processor
S
Tiﬁr:e
e Parallelism A !
= Physically simultaneous processing
. . -3
= Requires a multiprocessors or a B
multicore system c
S
-
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Synchronization

¢ All the interleavings of the threads are NOT
acceptable correct programs.

e Java provides synchronization mechanism to restrict
the interleavings

e Synchronization serves two purposes:

= Ensure safety for shared updates
— Avoid race conditions

s Coordinate actions of threads

— Parallel computation
—- Event notification
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Safety

e Multiple threads access shared resource
simultaneously
e Safe only if:
= All accesses have no effect on resource,
- e.g., reading a variable,
or
= All accesses idempotent
- BEg.,.y = sign(a).a = a*2;
or

= Only one access at a time:
mutual exclusion
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Safety: Example

e “The too much milk problem”

time

You

Your Roommate

3:00
3:05
3:10
3:15
3:20
3:25
3:35
3:45
4:50
34:50

Arrive home

Look in fridge, no milk

Leave for grocery

Arrive at grocery

Buy milk

Arrive home, put milk in fridge

Arrive home
Look in fridge, no milk
Leave for grocery

i: 1

B

Buy Milk

Arrive home, put up milk

Oh no!

. L
¢ Model of need to synchronize activities
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Why You Need Locks

thread A
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Mutual Exclusion

¢ Prevent more than one thread from accessing critical
section at a given time

= Once a thread is in the critical section, no other thread
can enter that critical section until the first thread has left
the critical section.

= No interleavings of threads within the critical section
= Serializes access to section

synchronized int getbal() {
return balance;
}

synchronized void post(int v) {
balance = balance + v;
}
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Principle of Operation

One of the most popular ways of explaining how pipeline works is using the process of doing
laundry. The laundry process consists of three standalone operations performed on the clothes:

1. Washing
2. Drying
3. Folding

The washing is performed using a washing machine, the drying using a dryer machine and the
folding is performed manually by the person doing the laundry. For the purpose of the example
let's say the washing takes 60 minutes, the drying takes 30 minutes and the folding of the
clothes takes 30 minutes. As each operation starts only after the previous has finished we have

one load of laundry completed for 2 hours.

Oh 1h 2h 3h ah
:
I

Washing ][ Drying ]IFuIding]
— — I
2" Load Washing " Drying IFnIding

— —
] 1

Fig. 1 Laundry process without pipeline technique
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In Fig. 1 we can see the timeline of these operations. If we look closely at the process, one thing
becomes obvious — once an operation is finished for the current load of clothes, the hardware
used stays idle and waits for the next load. For example, the washer machine is idle while drying
and folding operations are performed. This is certainly not the most efficient way of doing things
and one way to improve it is shown in Fig. 2. There we can see the same process of doing
laundry, but this time using a pipeline technique. As soon as the washing is completed, we can
put the clothes of the 2nd load, so the washing machine keeps working while the drying and the
folding of the 1st load are being executed.

Oh 1h 2h 3h 4h
.
1% Load [ Washing_J[Drying “Fnlding] : :
— e I 1 |
2" Load |  Washing I Drying anIding_] :
= s g I |
3" Load Washing H Drying IFnIding

Fig. 2 Laundry process with pipeline technique

Based on the examples above, we can conclude that using the pipeline technique does not have

an impact on the time needed for completing a single load of laundry (it takes 2 hours). The

improvement is visible when doing multiple loads. Without the pipeline, we can do two loads for

a total of 4 hours. Using the pipeline as shown in Fig. 2 we can do 3 loads in the same time

frame. The speedup would be even greater if all of the operations took the same time to

complete, thus allowing better overlapping in the pipeline. This is applied in microprocessor
eces: Pipeline implementations.



Microprocessor Pipeline Example

Now let's see how the pipeline technique is applied to a microprocessor.

It should be noted that there are many different pipeline implementations and each can have a

different number of pipeline stages. For this conceptual example, we will keep things simple and

use RISC load and store CPU architecture with 5 stage pipeline. The stages are:

Instruction Fetch (IF)
Instruction Decode (ID)
Execute (EX)

Memory Access (MEM)
Writeback (WB)

Each stage is executed by its own dedicated CPU functional unit and each takes one clock cycle

to execute.

Cycle Ne

CPU clock
1* Instruction
2" Instruction

3™ Instruction

R R RN RS R R

! |

IF .n:l 'E_.MEMHWB l |

|

| ! |

: IF iIDiEK 'MEMiWBI :

| | I | | I ' [
|

| |

| [OF o TEXMEM] w8

Fig. 3 Microprocessor instruction pipeline



In Fig. 3 we can see how instructions are overlapped using the pipelining technique. In the first
clock cycle, the first instruction is fetched. In the following clock cycle, that same instruction is
decoded while at the same time, the second instruction is being fetched. During the third clock
cycle, the first instruction is executed, the second instruction is decoded and the third instruction
is being fetched. On the fifth clock cycle, we have the first instruction completed. From then on,
we have an instruction completing on every clock cycle. The time for reaching the completion of
the first instruction passed through the pipeline is called “time to fill". It is dependent on the
number of stages. In this example, it takes 5 cycles to fill the pipeline.

Performance Improvement

In order to properly identify the performance improvement that can be achieved using the
pipelining technique, we need 1o use two terms — latency and throughput.

Latency is the time it takes for an operation to complete.

Throughput is the number of operations that are completed in a certain time frame.
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Looking at the example shown in Fig. 3 we can make the following conclusions:

« The pipeline does not affect the latency. The instruction cycle consisting of 5 phases is the
same whether pipelining is used or not. Each instruction takes 5 clock cycles to complete.

» The pipeline improves the throughput, with potential speedup equal to the number of
pipeline stages.

Once the pipeline is filled and continuously fed, we can have an instruction completed on every
clock cycle (Cycles Per Instruction (CPI) = 1). This is, of course, the ideal case not taking into
account some of the pipeline limitations mentioned in the next chapter.

Pipeline Limitations

There are some known limitations to pipelining technique used in microprocessors. Hazards
prevent the next instruction in the pipeline to be executed in its designated clock cycle. The
pipeline hazards can be grouped into three categories:

e Data Hazard — Can occur when an instruction depends on the result of a previous
instruction still being processed in the pipeline.

« Structural Hazard — Can occur when the available hardware does not support some
instruction combinations.

» Control Hazards — Caused by jump and branch instructions. These instructions will usually
require the flushing (emptying) of the pipeline and loading it with instructions from
addresses pointed by the branch and jump instructions.



2.1 Instruction-Level Parallelism

The first key type of parallelhism, instruction-level parallelism (or ILP), involves executing certain instructions of a program
simultaneously which would otherwise be executed sequentially [Goossens10], which may positively impact performance
depending on the instruction mix in the application,

Most modern CPUs utilize instruction-level parallelization techniques such as pipelining, superscalar execution, prediction,
out-of-order execution, dynamic branch prediction or address speculation [Goossens10]. However, only certain portions of
a given program's instruction set may be suitable for instruction-level parallelization, as a simple example illustrates below in
Figure 2. Because steps 1 and 2 of the sequential operation are independent of each other, a processor employing
instruction-level parallelism can run instructions 1. A. and 1 B. simultaneously and thereby reduce the operation cycles to
complete the operation by 33%. The last step must be executed sequentially in either case, however, as it 1s dependent on
the two prior steps.

Example:
Note: This example is an oversimplification, but it generally conveys both the potential benefit and potential limits of the

technique.

- Sequential Execution Instruction-Level Parallelism
1. a=10+5 1.A. a=10+5
2. b=12+7 1B. b=12+7
3. c=a+b 2. c=a+b
Instructions: 3 Instructions: 3

- Cycles: 3 Cycles: 2 (-33%)

\

Slide source: https://www.cs.wustl.edu/~jain/cse567-11/ftp/multcore.pdf
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Exploring different level of parallelism

¢ Instruction-level parallelism (ILP): how many
of the operations/instructions in a computer
program can be performed simultaneously
®leza+b
®2 f=c+d
®3m=-e*f
® 1 and 2 can operate in parallel . 3 depends to 1 and 2.

¢ A superscalar processor is a CPU that
implements a form of parallelism called
instruction-level parallelism within a
single processor. It therefore allows faster
CPU throughput (the number of instructions
that can be executed in a unit of time) than
would otherwise be possible at a given clock
rate. Source: wiki



https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer_program

Pipelining Execution: Single CPU

IF: Instruction fetch ID : Instruction decode
EX : Execution WEB - Write back

Instruction #

Instruction 1

Instmuction 1+1

Instruction 1+2

Instruction 1+3

Instuction 1+4
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Superscalar 2-issue pipleine

Cycles
Instruction type 1 2 3 4 5 6
Integer IF ID WB
Floating pomnt | IF ID WB
Integer IF ID WB
Floating pomnt IF ID WB
Integer IF ID WB
Floating point IF ID WB
Integer IF D
Floating point IF ID

2-issue super-scalar machine
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2.2 Thread-Level Parallelism

The second key type of parallelism, thread-level parallelism (or TLP), involves executing individual task threads delegated
to the CPU simultaneously [Blake 10][Ahn07]. Thread-level parallelism will substantially impact multi-threaded application
performance through various factors, ranging from hardware-specific, thread-implementation specific, to application-
specific, and consequently a basic understanding is important for the analyst.

Each thread maintains its own memory stack and instructions, such that it may be thought of as an independent task, even if
in reality the thread might not really be independent in the program or operating system. Thread-level parallelism i3 used by
programs and operating systems that have a multi-threaded design. Conceptually, it is straightforward to see why
thread-level parallelism would increase performance. If the threads are truly independent, then spreading out a set of
threads among available cores on a processor would reduce the elapsed execution time to the maximum execution time of
any of the threads, compared to a single threaded version which would require additive execution time of all of the threads.
Ideally, the work would also be evenly divided among threads, and the overhead of allocating and scheduling threads is
minimal Figure 3, below, illustrates these conceptual differences between single threading and thread-level parallelism,
assuming independence and no additional per-thread overhead.

Slide source: https://www.cs.wustl.edu/~jain/cse567-11/ftp/multcore.pdf



Example for Thread Level Parallelism

This simplistic ideal model of thread-level parallelism performance is complicated by several other factors, such that the
ideal scenario is rarely observed in real applications. Performance-impacting factors include the load balance, level of
execution independence, thread-locking mechanisms, scheduling methods, and thread memory required. Further, data-level
parallelism among the distributed threads may impact performance, as the subsequent section discusses. The thread
implementation library in both the operating system and the specific application will also impact performance [Blakel(]
[Moseley(7]. Consequently, an analyst examining an application with thread-level parallelism may need to control or
regress these factors to quantify multi-core performance of the multi-threaded application.
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¢ Explicit Thread Level Parallelism or
Data Level Parallelism

¢ Thread: process with own instructions
and data

® thread may be a process part of a parallel program
of multiple processes, or it may be an independent
program

® Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute
¢ Data Level Parallelism: Perform
Identical operations on data, and lots

of data



Types of Parallelism

LG G GGG G
Q0000000

Time
Time

Pipelining Data-Level Parallelism (DLP)

Time

Time

Thread-Level Parallelism (TLP) Instruction-Level Parallelism (ILP)
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Thread Level Parallelism (TLP)

¢ ILP exploits implicit parallel operations

within a loop or straight-line code
segment

TLP explicitly represented by the use of
multiple threads of execution that are
Inherently parallel

Goal: Use multiple instruction streams to
improve

1.Throughput of computers that run many
programs

2 .Execution time of multi-threaded programs

TLP could be more cost-effective to
exploit than ILP



New Approach: Mulithreaded Execution

¢ Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

® processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

® memory shared through the virtual memory mechanisms,
which already support multiple processes

® HW for fast thread switch; much faster than full process
switch =~ 100s to 1000s of clocks

¢ When switch?

® Alternate instruction per thread (fine grain)

® \When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)
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Fine-Grained Multithreading

¢ Switches between threads on each
Instruction, causing the execution of
multiples threads to be interleaved

¢ Usually done in around-robin fashion,
skipping any stalled threads

¢ CPU must be able to switch threads every
clock

¢ Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

¢ Disadvantage is it slows down execution of
Individual threads, since a thread ready to
execute without stalls will be delayed by
Instructions from other threads

¢ Used on Sun’s Niagara



Source of Underutilization

¢ Stall or Underutilization:
® L1 cache miss (Data and Instruction)
® |2 cache miss
® Instruction dependency
® Long execution time operation, example: Divide
® Branch miss prediction
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Course-Grained Multithreading

¢ Switches threads only on costly stalls, such as L2
cache misses

¢ Advantages

® Relieves need to have very fast thread-switching

® Doesn’ t slow down thread, since instructions from other
trtlrclalads iIssued only when the thread encounters a costly
sta

¢ Disadvantage is hard to overcome throughput
Iossies from shorter stalls, due to pipeline start-up
costs

® Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

® New thread must fill pipeline before instructions can
complete

¢ Because of this start-up overhead, coarse-grained
multithreading is better for r_educmﬁ penalty of
high cost stalls, where pipeline refill << stall time

¢ Used in IBM AS/400



Simultaneous Multi-threading ...

One thread, 8 units Two threads, 8 units

Cycle M M FX FX FP FP BRCC Cycle M M FX FX FP FP BRCC
1 1
2 2
3 3
4 4
5 | 5
6 6
7 7
8 8
9 9

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
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Without SMT, only a single
thread can run at any given
time

Floyzg Point

/

|

!

|
Thread 1: floating point

EEEEEE



Without SMT, only a single thread
can run at any given time

~
In'l'eg\e{'

|_\\

Al

l
Thread 2:

ECE611 integer operation 30



SMT processor: both threads
can run concurrently

I:Tieaq' Floyi/n; Point
BT

L\ I

|

I
Thread 2: Thread 1: floating point
integer operation 31
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Simultaneous Multithreading (SMT)

¢ Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

® | arge set of virtual registers that can be used to hold the
register sets of independent threads

® Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

® Qut-of-order completion allows the threads to execute out of
order, and get better utilization of the HW
¢ Just adding a per thread renaming table and
keeping separate PCs

® Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”



Thread 1 OfS context switch code Thread 2
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ol el 08 i 1 T thread, example:
Green, Yellow,
Thread 1 Thread 2 Thread3  Thread1  Blue, Red all are
threads.
Coarse gramed
E | FEEEEL T R R
to watch in
oty Gt Cin gy below only in
SMT we are

able to execute
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o | L L

Snnultaneous
Multithreaded
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Multi-core architectures

ECE611



ECE611

Single-core computer

CPU chip

register file

1r

: ALU

bus interface

v
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/

sygtem bus

memory bus
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main
memory
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L

<

use graphics
controller adapter
mousekeyboard monitor

/O bus
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disk
controller
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Expansion slots for
other devices such
as network adapters.
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Single-core CPU chip

CPU chip

the single core

register file

ﬁ

—
ALU
\‘47

bus interface

L

system bus

-

>
>
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Multi-core architectures

¢ New trend in computer architecture:
Replicate multiple processor cores on a single die.

Core 1 Core 2 Core 3 Core 4

register file register file register file register file

gALU aALU aALU <|§|>ALU

10 10 10 10

Multi-core CPU chip
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Multi-core CPU chip

¢ The cores fit on a single processor socket
¢ Also called CMP (Chip Multi-Processor)

® 3 0O
® T 0 O
® T 0 O
® 5 0 O

—
N
w
H
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The cores run in parallel

thread 1 thread 2 thread 3 thread 4
c c C c
) ) ) )
r r r r
e e e e
1 2 3 4
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Within each core, threads are time-
sliced (just like on a uniprocessor)

several several several several

threads threads threads threads
C C C C
o ) ) 0
r r r r
e e e e
1 2 3 4
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Interaction with the
Operating System

¢+ OS perceives each core as a separate
processor

¢ OS scheduler maps threads/processes
to different cores

¢ Most major OS support multi-core today:
Windows, Linux, Mac OS X, ..
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Why multi-core ?

¢ Difficult to make single-core
clock frequencies even higher
¢ Deeply pipelined circuits:
® heat problems
odifficult design and verification
®large design teams necessary
®server farms need expensive
air-conditioning
¢ Many new applications are multithreaded

¢ General trend in computer architecture
(shift towards more parallelism)
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General context:
Multiprocessors

7 : - P g - -

¢ Multiprocessor is any
computer with several

processors
¢+ SIMD

® Single instruction, multiple data Lemieux cluster

® Modern graphics cards Piftsbupgh'

¢ MIMD supercomputing

® Multiple instructions, multiple data center
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http://www.psc.edu/machines/tcs/lemieux.html

Programming for multi-core

¢ Programmers must use threads or processes
¢ Spread the workload across multiple cores
¢ Write parallel algorithms

¢ OS will map threads/processes to cores
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As programmers, do we care?

¢ What happens if we run a program on a
multi-core?

void
array add(int A[], int B[], int C[], int length)
{

int 1i;
for (i = 0 ; i < length ; ++i) {
C[i] = A[1i] + BI[1i];
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What if we want a program to run on both
processors?
¢ VY‘g have to explicitly tell the machine exactly how to do
this
® This is called parallel programming or concurrent
programming
¢ There are many parallel/concurrent programming models

® We will look at a relatively simple one: fork- join
parallelism

J
O
e—
mas-ter 1
thread N
{ parallel region } { parallel region }

48



Fork/Join Logical Example

1.Fork N-1 threads
2.Break work into N pieces (and do it)
3.Join (N-1) threads

void
array add(int A[], int B[], int C[], int length) {
cpu num = fork (N-1);
int 1i;
for (i = cpu num ; i < length ; i += N) {
C[i] = A[i] + BI[i];

}
join();

}
How good is this with caches?

Al [T
B [ [ [ ][]

Memory
LI [ T]]
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How does this help performance?

¢ Parallel speedup measures improvement from
parallelization:

time for best serial version

speedu =
P P(p) time for version with p processors

¢ What can we realistically expect?

-
‘u

| speedup(p)

=k

p = number of processors
50



Reason #1: Amdahl’ s Law

In general, the whole computation is not (easily) parallelizable

E—-

master
thread

Serial regions

ECE611 51



Reason #1: Amdahl’s Law

¢ Suppose a program takes 1 unit of time to execute serially
¢ A fraction of the program, s, is inherently serial (unparallelizable)

-+ Time on a single processor ——=

=

(1-s)

=

(1-s)/p

Time aon a

-— parallel

machine

_F.

New Execution _ 1-S
Time TP

¢ For example, consider a program that, when executing on one
processor, spends 10% of its time in a non-parallelizable region.
How much faster will this program run on a 3-processor system?

New Execution

Time

9T
3

-+

AT = Speedup =

¢ What is the maximum speedup from parallelization?
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Reason #2: Overhead

void
array add(int A[], int B[], int C[], int length) ({
cpu num = fork (N-1);
int 1i;
for (i = cpu num ; i < length ; i += N) {
C[i] = A[i] + B[1i];
}

join();

—Forking and joining is not instantaneous
« Involves communicating between processors

* May involve calls into the operating system
— Depends on the implementation

New Execution 1-s

Time P

+ s + overhead(P)
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