
Introduction to Linked List:
Review

Source: http://www.geeksforgeeks.org/data-structures/linked-list/

http://www.geeksforgeeks.org/data-structures/linked-list/

Linked List

• Fundamental data structures in C

• Like arrays, linked list is a linear data structure

• Unlike arrays, linked list elements are not stored at contiguous
location, the elements are linked using pointers

Array vs Linked List

Why Linked List-1

• Advantages over arrays
• Dynamic size

• Ease of insertion or deletion
• Inserting a new element in an array of elements is expensive, because room has to be

created for the new elements and to create room existing elements have to be shifted

For example, in a system if we maintain a sorted list of IDs in an array id[].

id[] = [1000, 1010, 1050, 2000, 2040]

If we want to insert a new ID 1005, then to maintain the sorted order, we have to
move all the elements after 1000

• Deletion is also expensive with arrays until unless some special techniques are used. For
example, to delete 1010 in id[], everything after 1010 has to be moved

Why Linked List-2

• Drawbacks of Linked List
• Random access is not allowed.

• Need to access elements sequentially starting from the first node. So we cannot do
binary search with linked lists

• Extra memory space for a pointer is required with each element of the list

Representation in C

• A linked list is represented by a pointer to the first node of the linked
list
• The first node is called head

• If the linked list is empty, then the value of head is null

• Each node in a list consists of at least two parts
1. Data

2. Pointer to the next node

• In C, we can represent a node using structures

First Simple Linked List in C

Linked List Traversal

• In the previous program, we created a simple linked list with three
nodes

• Let us traverse the created list and print the data of each node

Inserting A Node

• Methods to insert a new node in linked list
1. At the front of the linked list

2. After a given node

3. At the end of the linked list

Add a node at the front

• A 4 step process

• New node can be added before the head
of the given linked list

• Newly added node becomes the new head
of the linked list

• Let us call the function that adds at the
front of the list is push()

• The push() must receive a pointer to the
head pointer, because push must change
the head pointer to point to the new node

Add a node after a given node

• A 5 step process

• We are a given pointer to a node

• New node is inserted after the given
node

Add a node at the end

• A 6 step process

• New node can be added after the last
node of the given linked list

• Since a linked list is typically
represented by the head of it, we have
traverse the list till end and then
change the next of last node to new
node

Deleting A Node

• Let us formulate the problem statement to understand the deletion
process.
• Given a “key”, delete the first occurrence of this key in linked list

• To delete a node from linked list, we need to do following steps:
• Find previous node of the node to be deleted

• Change next of previous node

• Free memory for the node to be deleted

• Since every node of linked list is dynamically allocated using malloc() in C, we
need to call free() for freeing memory allocated for the node to be deleted

Deleting A Node

Union & Intersection of Two Linked Lists

• Problem Statement: Given two linked lists, create union & intersection lists
that contain union and intersection of the elements present in the given lists

• Order of elements in output lists doesn’t matter

• Intersection (list1, list2)
• Initialize result list as NULL

• Traverse list1 and look for its each element in list2

• If the element is present in list2, then add the element to result

• Union (list1,list2)
• Initialize result list as NULL

• Traverse list1 and add all of its elements to result

• Traverse list2: if an element of list2 is already present in result then do not insert it to
the result, otherwise insert

Union & Intersection of Two Linked Lists

Link of the Codes

• Linked List Traversal:

http://www.geeksforgeeks.org/linked-list-set-1-introduction/

• Linked List Insertion:

http://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/

• Linked List Deletion:

http://www.geeksforgeeks.org/linked-list-set-3-deleting-node/

• Union & Intersection of Two Linked Lists:

http://www.geeksforgeeks.org/union-and-intersection-of-two-linked-lists/

http://www.geeksforgeeks.org/linked-list-set-1-introduction/
http://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://www.geeksforgeeks.org/linked-list-set-3-deleting-node/
http://www.geeksforgeeks.org/union-and-intersection-of-two-linked-lists/

