Embedded Processing Applications
and Multicore

Prof. Mohsenin
CMPE 311



_bedded Processing in Big Data World

m The vast quantities of real-time data produced by embedded
sensors, smartphones and wearable systems present new
challenges

m Data transmission, storage, and analysis

m Maintaining high throughput processing and low latency
communications,

m Low power consumption.

m Systems are getting smarter and independent

m |ncorporate adaptive and intelligent kernels to overcome the noise
and false detection by combining the analysis of multi-modal
signals.

m Reconfiguration and programmability are required to
generalize hardware for different environments and tasks

m Reduces design time and overall time to market

m Increasing energy-efficiency (i.e. 1GOPS/W, |pJd/op) requires
Innovations in algorithms, programming models, processor
architectures, and circuit design
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m Requirements:
m Real time, low power, light weight, high accuracy

m Steps to design an embedded application on a
programmable processor
m Understand the target platform
m e.g single processor vs multiprocessor

m Understand the digital signal processing requirement for the
application
m What algorithms
m How many data channels, how many bits per channel data
m Break the application into multiple tasks

m \Write a code for each task and verify it using real/simulated data
and examine the accuracy

| Program the processor
m Single core: all tasks in one core
m Multi core: parallelize the tasks and program each core for the task



_g for Reduction in Data Transmission

m Single pixel camera setup at NASA Goddard

m |mage reconstruction using compressive sensing on
Virtex 7 FPGA



®_ Tongue Drive System (TDS)
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A tongue-operated assistive technology that enables individuals with
severe physical impairments to control their environments.

An array of magnetic sensors detect the magnetic field variations
resulted from the movements of a small magnetic tracer attached to the
tongue, convert the sensed signals to the user commands in a local
processor and wirelessly send the user command to the_ taraet device.
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1. Sensors: 3. Control Unit:
Four 3-axial MCU: Tl CC2510

Headset Components Magneti
» Array

magneto-resistive 2.4 GHz RF
sensors (two on =8 [ransceiver
each pole) ﬁ o

,\ _
2. Magnet: 4. Battery:
Disk-shaped 130 mAh, 3.7V,
[4.8mm x 1.5mm] plus power
Embedded in a byl management circuit

titanium tongue stud .T

® eTDS has been clinically tested with NIH support at the top rehab
Institutes, such as Shepherd Center in Atlanta and Rehabilitation Institute
of Chicago.
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m Transmits all the raw data to a
computer to process

= High transmission volume cause high

M [ Top view ]

49m _ ,

power consumption T

m Sends 20bits for each sensor at 50 Hz R
m There are 12 sensors => total is 12 S
Kbits/sec 3

m Size limitation restricts us to a 50mAh v

battery and consequently a shorter
battery life
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zure Detection

Epilepsy is the 4th most common neurological disorder, 1 in 26 people may
develop epilepsy in their lifetime.
About 25% of epilepsy patients have intractable seizures which may occur
with an unpredictable pattern, including during sleep when there may be less
surveillance by family.
m Places these patients at greatest risk from the potential morbidity and
mortality of severe or sustained seizures.
Current ambulatory seizure monitoring devices are infeasible for long-term and
continuous use due to:
m Large false positive/negative signals, noise due to patient activity, bulky
equipment, high power consumption, and the inability of patients to carry

on with their daily lives. 8



_)etection Problem

m Electrical signals can be detected by EEG signals before or just at
the start of clinical symptoms

m The ability to detect can be used to warn the patient or alert caregiver

m  Seizure patterns are unique to each patient and seizure and non-seizure
EEG signals from the same patient can share similar characteristics

m Complex algorithms and multichannel detection is necessary for better
detection
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m Headband sensors

EEG data, EOG, gyroscope
data, and accelerometer

m \Wristband sensors

heart rate, blood flow, and
blood oxygenation through
pulse oximeter.

_n for Multi-physiological signal processing

Seizure Detection Block
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_Iication Into multiple tasks

m Seizure detection
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_ication Into multiple tasks

m Tongue drive system
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m tasks further to multiple parallel

m Example K-nearest Neighborhood (KNN)
Machine Learning

m Finds K- nearest neighbors to the test input
and decides based on the majority vote of the
neighbors.

m utilizes Euclidean distance

dy = J (XTest—f1 — XTrain—f1) - T (XTest—rz — ITrain—z,) - T+ (XTast—m — X Train—fm. )

dy = J(ITgsr—fi — XTrain—r1)° T (X Tesc—f2 — XTram—r2.)° T+ (XTast—fm — XTram—fm.)-

d, = J(ITBSE—H — Xrrain—f1n)- T (X Tast—f2 — X Train—gz,) - + = + (X Tast—fm — XTrain-fmg)"



m tasks further to multiple parallel
smaller tasks

m Example K-nearest
Neighborhood
(KNN) mapplng 5 features
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Many-Core Processor
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Simulating the application on

manvcore
(1) Write an app and (2) Convert the app and | (3) Input to simulator or
one or more tests tests to binary Verilog testbench
foo.mcapp —» Many-Core
— -
Simulator
Many-Core
_ Assembler
b toct i Many-Core
ar.mctes :
| —»  Verilog
| Testbench
|
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(a) Application directory structure

Example asm code for Core0

foo.mcapp/
asm/ MUL R4 R3 R3 // power 2 to calcul
inst/ ADD R5 R5 R4 // adding up all dis
corel.asm INC R1 R1 O
corel.asm BG 26 R5 RO // sorting
co MOV R11 R10 0
core63.asm MOV R10 RO 0
bin/ MOV R R5 0
inst/ JMP 32 0 0

core.bin
corel.bin

core6t3.bin
config. json
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_for multicore programming

m Parallelizing the task in a very efficient way to
reduce data

m Communication between cores
m Through shared router, bus

m Data Storage and coherence

Local ! Local 5 Local _‘ Local “
I

mem mem mem mem
| cache | cache | cache cache

multi-core chip
Main memory
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