
Timers and Counters
Hardware Timing, Counters

What are Timers/Counters

• Hardware provided module which counts

▫ Timers count clock cycles

▫ Counters count arbitrary signal change

• Counts up to threshold then sets interrupt flag

▫ CPU can poll for interrupt flag – software polling

▫ CPU can be interrupted by flag – interrupt driven

Timer/Counter Components

• Clock Prescaler (divider)

• Clock source selection

▫ In the presence of multiple clocks

• N-bit timer/counter – Actual Count value

• Compare registers

• Capture registers – for precise capture of time of
event

• Control Logic

• Status/Control Registers – Defines behavior

Timer Hardware

P
resca

ler

Sync
Edge Detect

C
lo

ck
 S

ele
ct

Counter

Control
Logic

Compare
Register

>=

==MAX

==0

Interrupt Request

Timer CTL reg

C
le

a
r

U
p
/D

o
w

n

E
n

a
b

le

Clock Prescaler

• The clock prescaler modifies the rate at which a
timer changes
▫ Allows timer/counter register to cover a larger range

• For a timer, log2(Range*Clock Freq) is a lower
bound on the number of counter bits required
▫ Assuming no prescaling

• Range AND precision define the # of bits
required
▫ If you don’t need as high of precision, you may

prescale the clock to achieve a higher range from same
of bits

Capture Registers

• Dedicated hardware registers for determining
the time of an event

▫ Output of timer/counter register is connected to
storage register that is triggered to save by an
event signal

• What would be the software equivalent?

▫ How would this compare in accuracy to the
hardware version?

Compare/Match Registers

• Additional Custom hardware to monitor the
value of the timer/counter an signal another
event to occur

• Can trigger:

▫ Flag to be set for software to detect through
polling

▫ An interrupt

▫ A pin to change

▫ A reset of the timer/counter register

Timer/Counter Polling

• while(COUNTER_REG < VALUE);

▫ This would wait until the counter reg is at least
value. Use at least to avoid missing the counter
value. Can still overflow counter reg

• Timer polling for delay

▫ Get easily predictable accuracy

 Reset timer, wait for value to be reached or exceeded

• Timer polling for delay with other stuff to do

▫ Useful when response precision isn’t high

 Reset Timer, do other stuff, check if value is reached

Polling for a Timer flag

• In our previous examples, we can potentially
miss values

▫ If the counter overflows, checking if register is less
than will not give the value we want

• Use flags which must be explicity cleared

• Overflow Flag

▫ Raised when counter hits max value

• Compare-Match flag

▫ Raised when counter hits compare-register value

• Must explicitly clear these flags after event

Timer Actions

• A timer can be set up to regularly do one or more
of the following:

▫ Trigger an interrupt

▫ Cause the hardware to make some pin value
change

▫ Reset the timer itself

• On one of the following events

▫ Overflow

▫ Compare-match events

Timer Actions

• This hardware-based ISR triggering and self-resetting
allows for precise timing and very regular triggering of
ISR calls

▫ Does not rely on any software timing or intermittent and
often irregular polling

 (software doesn't always take the same time in every loop
iteration if conditional statements exist).

▫ Note that when an interrupt is enabled the corresponding
flag is automatically cleared in hardware.

• Automatic Pin Changes allow for precise and flexible
digital waveform generation.

Getting the Desired Timing

• Takes some thought to get frequency you want

▫ Resulting Frequency = input
clock/prescaler/(maxcount+1)

 Max count may be defined by a compare register or
maximum value of the counter

 Clock divisuion = prescaler *(maxcount+1)

 You mush choose the prescaler and max count to get
the clock scaling you want

 Prescaler is typically limited to a few select values

Example

• Assume 1MHz input clock, need 3 kHz period
from 8-bit timer

▫ We want divison factor of (1M/3k)=333.3

 Setting compare register to 333 can’t be done on 8-
bit counter

▫ We can set prescaler to 2 and compare register to
(333.33/2-1) = 167-1

▫ We get a resulting period of (1M/167) = 2994kHz

▫ Alternatively you may use prescaler of 4 and max
count of 83-1 to get 3012kHz

Simultaneous Timers

• If multiple irregular (perhaps simultaneous) timing events are
needed

• Leapfrogging

▫ Moves compare value in software instead of resetting the counter
in hardware

• Useful if multiple timers are to be implemented with limited set of
hardware timers

• Ex: timing event and preserve total time

▫ Set compare register for first trigger event and set up ISR

▫ Reset and start counter

▫ Upon call of ISR, determine next event value and set compare
register

▫ Repeat

Extending Timer (software+overflow)

• The effective timer/counter range can be
extended using software and the overflow bit

▫ Can double range of counter for one go-through

• Example: count 10.5 *max counter

▫ Start counter, value = 0

▫ Counter overflows (overflow bit set)

▫ Software detects overflow, increments value resets
overflow flag

▫ Value reaches 10, ISR set on compare register

▫ Counter hits ½ max, interrupt occurs

Multi-Register Access Problems

• Consider trying to read a 16-bit timer

▫ Read lower value – 0x00(FF)

▫ Read upper value – 0x(01)00

▫ Would yield ox01FF, which is incorrect

• Consider trying to write to a 16-bit timer

▫ Write upper value – 0x(00)FF

▫ Write lower value – 0x01(00)

▫ Would yield 0x0100

AVR Multi-Register Access solution

• Write to upper byte loads into temp register

• Write to lower byte triggers write to register from
temp register to top byte

• Read from lower byte triggers upper byte to load
into temp register

• Read from upper byte reads from temp register

• Always write top then lower

• Always read lower then top

System Tick and Software Timers

• Can implement several low precision (~1ms-
20ms) timers using system tick and software
compare events

• System “tick” would be a slower timer (perhaps
0.1ms – 1ms) that triggers ISR to increment tick
value

Slip Adjustment

• If your system tick ends up not being a nice
“round number” and you want to remove long-
term drift

▫ Slip your system tick software accumulator to
remove drift

• For some leap ticks, count is modified, just as a
day is added every leap year

Event Counters

• Counters can be configured to count a certain
number of events (usually for rapid events)

▫ Select a trigger input rather than regular clock

▫ Use external pin

Counter Modes

• AVR timers have a few important modes of operation

• Non-PWM Modes

▫ Normal Mode – count and reset at overflow – set
overflow flag

▫ Compare Timer Clear (CTC) Mode – reset upon
reaching comparison value

• PWM Modes

▫ Fast PWM – beginning of pulses are regularly spaced

▫ Phase Correct PWM – center of pulses regularly
spaced

AVR Counter Hardware

Normal Mode

• Always count up

• Non counter clear, just rollover from 0x00 to 0xFF

• T/C Overflow flag (TOV0) set the same cycle that TCNT0 becomes 0

▫ Can treat TOV0 like 9th bit on first count run

▫ Can use TOV0 to extend counter

• Setting configuration bits COM0A[1:0] a designated output pin can
be modified when counter matches the value of output compare
register

• Normal mode is limited to count periods of 2N, where N is number
of counter bits. To create variable count period, CTC modes can be
used

Clear Timer on Compare Match (CTC) Mode

• When counter reaches value of Output Compare Register
(OCR0A) event is referred to as Output Compare Event

• Upon event, next value of counter is 0 and Output
Compare Flag is set

• By changing output compare registers, one manipulates
the counter max value and thus controls the count cycle
frequency and frequency of derived waveforms or
interrupt calls

• If output compare interrupt flag is set and the global
interrupt enable flag is set, an interrupt is triggered and
output compare flag is cleared automatically

CTC Mode Example

• Use CTC mode to
toggle output pin on
compare match

• Vary counter compare
register to achieve
different frequency

Caution: if computing a new OCR0A value in software

after the Compare Flag is set, if the value is too small

and the software is too slow, the counter will pass the

value before it is set and the comparison event not

happen on that cycle. The counter will count to 0xFF

roll over, and the match will occur on the next count

cycle and may result in an irregular waveform. This

also why timers (TCNT0) should be set to 0 initially.

Fast PWM

• Clears/sets value when
hits compare register

• Sets/clears value when
overflow to bottom

Phase Correct PWM Mode

• Phase correct PWM modes are like standard
PWM modes but the center of the pulse does not
change spacing when pulse width changes

• This is achieved by a special “dual slope” counter
behavior

▫ The counter conuts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM

Phase Correct PWM Mode

• Clears/sets on compare
match on up slope

• Sets/clears on compare
match on down slope

16-Bit Timers

• Similar to 8-bit timers

▫ Note all 16-bit reads and writes involve a high-
byte buffer

▫ If using 8-bit access, read low byte first and write
it last

▫ If using 16-bit register names, C compiler will take
care of the order

Timer Counter 0 and 1

• Share the same prescaler but have separate
selection

Timer/Counter 1 Modes

• Modes are similar to T/C 0, but use dual-purpose Input
Capture Register/Count Top Register (ICR)

• In PWM modes

▫ ICR controls frequency

▫ OCR and ICR together control pulse width

