
Structs and Unions
C Structures, Unions, Example
Code

Review

• Introduction to C

• Functions and Macros

• Separate Compilation

• Arrays

• Strings

• Pointers

Structs vs Objects

• C is not an OOP language

▫ No way to combine data and code into a single
entity

• Struct – C method for combining related data

▫ All data in a struct can be accessed by any code

Coming from an objected-oriented programming brackground, think of
classes as an extension of struct. Classes have data members but allow
you to restrict access to them while providing a mechanism to organize
and bundle a set of related functions. You can think of a struct as an
OOP class in which all data members are public, and which has no
methods, not even a constructor.

Structs

• A struct represents a block of memory where a
set of variables are stored
▫ Each member of struct has offset from beginning

of struct block determining where data is located

• General form of structure definition:
struct example{
 type ex1;
 type ex2;
};

• Note the semicolon at the end of the definition

Struct Example

• A point in the Euclidean coordinate plane

▫ struct point{

▫ int x; //x-coordinate

▫ int y; //y-coordinate

▫ };

• To create point data types:

▫ struct point p1,p2;

• To access point members:

▫ p2.x, p2.y

Passing Structs to Functions

• Like other variable types, struct variables (e.g.
p1, p2) may be passed to function as parameter
and returned as parameters

▫ The ability to return a struct variable provides
option to bundle multiple return values

• Members of a struct are variables and may be
used like any other variable

▫ i.e. p1.x can be used like any other integer

Struct Function Example
// struct point is a function parameter
void printPoint(struct point aPoint) {
 printf (“(%2d, %2d)”, aPoint.x, aPoint.y);
}
// struct point is the return type
struct point inputPoint() {
 struct point p;
 printf(“please input the x-and y-coordinates: “);
 scanf(“%d %d”, &p.x, &p.y);
 return p;
}
int main () {
 struct point endpoint; // endpoint is a struct point variable
 endpoint = inputPoint();
 printPoint(endpoint);
 return 0;
}

Initializing a Struct

• Struct variables may be initialized when it is
declared by providing the initial values for each
member

▫ E.g. struct point p1 = {-5,7};

• Struct variables may be declared at the same
time the struct is defined

▫ Struct point{ int x, y;} startpoint, endpoint;

 Defines structure point, and point variables
startpoint and endpoint

Typedef and Structs

• Its common to use a typedef for the name of a struct
to make code more concise
▫ typedef struct point{
▫ int x, y;
▫ } POINT_t;

• This defines the structure point, and allows
declaration of point variables using either struct
point, or just POINT_t
▫ E.g. struct point endpoint; POINT_t startpoint;
▫ Same can be done with Enums
 Typedef enum months{} MONTHS_e;

Struct Assignment

• Contents of struct variable may be copied to
another struct variable using assignment (=)

▫ POINT_t p1, p2;

▫ p1.x=15;

▫ p1.y = -12;

▫ p2 = p1; // same as p2.x = p1.x; p2.y = p1.y

• Assignment represents copying a block of
memory with multiple variables

Struct Within a Struct

• A data element in a struct may be another struct

▫ Similar to class composition in OOP

• E.g line composed of points

▫ typedef struct line{ POINT_t start,end} LINE_t;

• Given declarations below, how do you access x
and y coordinates of line

• LINE_t line, line1, line2;

▫ Line.start.x = 13

Arrays of Struct

• Since struct is a variable type, arrays of structs
may be created like any other type

▫ E.g. LINE_t lines[5];

• Code to loop through and print each lines start
point

for(int i = 0; i<5; i++){

 printf(%d,%d\n”,lines[i].start.x, lines[i].start.y);

Example Struct Array Code
/* assume same point and line struct definitions */
int main() {
 struct line lines[5]; //same as LINE_t lines[5];
 int k;
 /* Code to initialize all data members to zero */
 for (k = 0; k < 5; k++) {
 lines[k].start.x = 0;
 lines[k].start.y = 0;
 lines[k].end.x = 0;
 lines[k].end.y = 0;
 }
 /* call the printPoint() function to print
 ** the end point of the 3rd line */
 printPoint(lines[2].end);
 return 0;
}

Arrays Within a Struct

• Structs may contain arrays as well as primitives

typedef struct month{

 int nrDays;

 char name[3+1];

}MONTH_t;

MONTH_t january = {31,”JAN”};

• Note: january.name[2] is ‘N’

Example Struct with Arrays

struct month allMonths[12] =
{31, “JAN”}, {28, “FEB”}, {31, “MAR”},
{30, “APR”}, {31, “MAY”}, {30, “JUN”},
{31, “JUL”}, {31, “AUG”}, {30, “SEP”},
{31, “OCT”}, {30, “NOV”}, {31, “DEC”}
}; //Same as MONTH_t allMonths[12]=…;
// write the code to print the data for September
printf(“%s has %d days\n”,
allMonths[8].name, allMonths[8].nrDays);
// what is the value of allMonths[3].name[1]
printf(“%c\n”,allMonths[3].name[1]);
P
printf(“%s\n”,allMonths[3].name);
APR

Bit Fields

• When saving space in memory or a communications
message is important, we need to pack lots of
information into a small space

• Struct syntax can be used to define “varaibles” which are
as small as 1 bit in size
▫ Known as “bit fields”
Struct weather{
 unsigned int temperature : 5;
 unsigned int windSpeed : 6;
 unsigned int isRaining : 1;
 unsinged int isSunny : 1;
 unsigned int isSnowing : 1;
};

Using Bit Fields

• Bit fields are referenced like any other struct
member

struct weather todaysWeather;

todaysWeather.isSnowing = 0;

todaysWeather.windSpeed = 23;

// etc

If(todayWeather.isRaining)

 printf(“%s\n”, “Take your umbrella”);

More on Bit Fields

• Almost everything about bit fields is
implementation specific

▫ Machine and compiler specific

• Bit fields may only be defined as (unsigned) ints

• Bit fields do not have addresses

▫ & operator may not be applied to them

Unions

• A union is a variable type that may hold different
types of members of different sizes, but only one
type at a time

▫ All member of the union share the SAME memory

▫ Compiler assigns enough memory for the largest
of the member types

▫ Syntax of a union and using its members is the
same as for a struct

Union Definition

• General form of a union definition is

Union ex{

 type member1;

 type member2;

};

• Note that the format is the same as for a struct

• Only member1 or member2 will be in that
memory location

Application of Unions

struct square { int length; };
struct circle { int radius; };
struct rectangle { int width; int height; };
enum shapeType {SQUARE, CIRCLE, RECTANGLE };
union shapes {
 struct square aSquare;
 struct circle aCircle;
 struct rectangle aRectangle;
};
struct shape {
 enum shapeType type;
 union shapes theShape;
};

Application of Unions

double area(struct shape s) {
 switch(s.type) {
 case SQUARE:
 return s.theShape.aSquare.length *
 s.theShape.aSquare.length;
 case CIRCLE:
 return 3.14 * s.theShape.aCircle.radius *
 s.theShape.aCircle.radius;
 case RECTANGLE :
 return s.theShape.aRectangle.height *
 s.theShape.aRectangle.width;
 }
}

Union vs. Struct

• Similarities

▫ Definition syntax nearly identical

▫ Member access syntax identical

• Differences

▫ Members of a struct each have their own address in
memory

▫ Size of a struct is at least as big as the sum of the sizes
of the members

▫ Members of a union SHARE the same memory

▫ The size of the union is the size of the largest member

Struct Storage in memory

• Struct elements are stored in the order they are declared in
• Total size reserved for a struct variable is not necessarily the

sum of the size of the elements
▫ Some systems require some variables to be aligned at certain

memory addresses (usually small power of 2)
 Requires some padding between members in memory = wasted

space
▫ If members are reordered, it may reduce total number of padding

bytes required
 Usually rule of thumb is to place larger members at the beginning

of definition, and small types (char) last
▫ Special compiler options may allow packing, reducing, or

eliminating padding but may come at a cost in speed as data must
be manipulated

▫ In 8-Bit AVR with single-byte memory access there will be no
padding

Slide borrowed from Dr. Robucci’s 311 course

Slide borrowed from Dr. Robucci’s 311 course

