Structs and Unions

C Structures, Unions, Example
Code

Review

Introduction to C
Functions and Macros
Separate Compilation
Arrays

Strings

Pointers

Structs vs Objects

C is not an OOP language

= No way to combine data and code into a single
entity

Struct — C method for combining related data
= All data in a struct can be accessed by any code

Coming from an objected-oriented programming brackground, think of
classes as an extension of struct. Classes have data members but allow
you to restrict access to them while providing a mechanism to organize
and bundle a set of related functions. You can think of a struct as an
OOP class in which all data members are public, and which has no
methods, not even a constructor.

Structs

A struct represents a block of memory where a
set of variables are stored

= Each member of struct has offset from beginning
of struct block determining where data is located

General form of structure definition:
struct example{

type exi;

type ex2;
53

Note the semicolon at the end of the definition

Struct Example

A point in the Euclidean coordinate plane
= struct point{

= intx; //x-coordinate

= inty; //y-coordinate

° 15

To create point data types:

s struct point p1,p2;

To access point members:

5 P2.X, p2.y

Passing Structs to Functions

Like other variable types, struct variables (e.g.
p1, p2) may be passed to function as parameter
and returned as parameters

= The ability to return a struct variable provides
option to bundle multiple return values

Members of a struct are variables and may be
used like any other variable
s 1.e. p1.x can be used like any other integer

Struct Function Example

// struct point is a function parameter

void printPoint(struct point aPoint) {
printf (“(%2d, %2d)”, aPoint.x, aPoint.y);

h

// struct point is the return type
struct point inputPoint() {
struct point p;
printf(“please input the x-and y-coordinates: “);
scanf(“%d %d”, &p.x, &p.y);
return p;
)
int main () {
struct point endpoint; // endpoint is a struct point variable
endpoint = inputPoint();
printPoint(endpoint);
return o;

¥

Initializing a Struct

Struct variables may be initialized when it is
declared by providing the initial values for each
member
= E.g. struct point p1 = {-5,7};
Struct variables may be declared at the same
time the struct is defined
= Struct point{ int x, y;} startpoint, endpoint;

- Defines structure point, and point variables

startpoint and endpoint

Typedef and Structs

Its common to use a typedef for the name of a struct
to make code more concise
= typedef struct point{
= IntXx,y;
o } POINT _t;
This defines the structure point, and allows
declaration of point variables using either struct
point, or just POINT _t
= E.g. struct point endpoint; POINT_t startpoint;
= Same can be done with Enums
+ Typedef enum months{} MONTHS_e;

Struct Assignment

Contents of struct variable may be copied to
another struct variable using assignment (=)
s POINT_t p1, p2;

° pL.X=15;

o pLY = -12;

s p2 = p1; // same as p2.x = p1.X; p2.y = pl.y
Assignment represents copying a block of
memory with multiple variables

Struct Within a Struct

A data element in a struct may be another struct
= Similar to class composition in OOP

E.g line composed of points

s typedef struct line{ POINT _t start,end} LINE_t;
Given declarations below, how do you access x
and y coordinates of line

LINE tline, line1, line2;

» Line.start.x = 13

Arrays of Struct

Since struct is a variable type, arrays of structs
may be created like any other type
» E.g. LINE_ t lines[5];
Code to loop through and print each lines start
point
for(inti = 0; i<5; 1++){

printf(%d,%d\n” lines[i].start.x, lines[i].start.y);

Example Struct Array Code

/* assume same point and line struct definitions */
int main() {
struct line lines[5]; //same as LINE_ t lines[5];
int k;
/* Code to initialize all data members to zero */
for(k=0;k<5; k++){
lines[k].start.x = 0;
lines[k].start.y = 0;
lines[k].end.x = 0;
lines[k].end.y = 0;
}
/* call the printPoint() function to print
** the end point of the 3 line */
printPoint(lines[2].end);
return o;

Arrays Within a Struct

Structs may contain arrays as well as primitives
typedef struct month{
int nrDays;
char name[3+1];
}JMONTH._t;
MONTH_ t january = {31,”JAN"};

Note: january.name|[2] is ‘N’

Example Struct with Arrays

struct month allMonths[12 | =

{31, “JAN"}, {28, “FEB"}, {31, “"MAR"},

{30, “APR™}, {31, “MAY"}, {30, “JUN"},

{31, “JUL"}, {31, “AUG"}, {30, “SEP"},

{31, “OCT"}, {30, “NOV"}, {31, “DEC”}

}; //Same as MONTH_t allMonths[12]=...;
// write the code to print the data for September
printf(“%s has %d days\n”,
allMonths[8].name, allMonths[8].nrDays);
// what is the value of allMonths[3].name[1]
printf(“%c\n”,allMonths[3].name[1]);

P

printf(“%s\n”,allMonths[3].name);

APR

Bit Fields

When saving space in memory or a communications
message is important, we need to pack lots of
information into a small space
Struct syntax can be used to define “varaibles” which are
as small as 1 bit in size
» Known as “bit fields”
Struct weather{

unsigned int temperature : 5;

unsigned int windSpeed : 6;

unsigned int isRaining : 1;

unsinged int isSunny : 1;

unsigned int isSnowing : 1;

Using Bit Fields

- Bit fields are referenced like any other struct
member
struct weather todaysWeather;
todaysWeather.isSnowing = 0;
todaysWeather.windSpeed = 23;
// etc
If(todayWeather.isRaining)

printf(“%s\n”, “Take your umbrella™);

More on Bit Fields

Almost everything about bit fields is
implementation specific

= Machine and compiler specific

Bit fields may only be defined as (unsigned) ints
Bit fields do not have addresses

= & operator may not be applied to them

Unions

A union is a variable type that may hold different
types of members of different sizes, but only one
type at a time

= All member of the union share the SAME memory

= Compiler assigns enough memory for the largest
of the member types

= Syntax of a union and using its members is the
same as for a struct

Union Definition

General form of a union definition is
Union ex{

type memberi;

type member2;
¥
Note that the format is the same as for a struct
Only memberi1 or member2 will be in that
memory location

Application of Unions

struct square { int length; };
struct circle { int radius; };
struct rectangle { int width; int height; };
enum shapeType {SQUARE, CIRCLE, RECTANGLE };
union shapes {
struct square aSquare;
struct circle aCircle;
struct rectangle aRectangle;
¥
struct shape {
enum shapeType type;
union shapes theShape;

&

Application of Unions

double area(struct shape s) {
switch(s.type) {
case SQUARE.:
return s.theShape.aSquare.length *
s.theShape.aSquare.length;
case CIRCLE:
return 3.14 * s.theShape.aCircle.radius *
s.theShape.aCircle.radius;
case RECTANGLE :
return s.theShape.aRectangle.height *
s.theShape.aRectangle.width;

Union vs. Struct

- Similarities
= Definition syntax nearly identical
= Member access syntax identical

- Differences

o Members of a struct each have their own address in
memory

» Size of a struct is at least as big as the sum of the sizes
of the members

= Members of a union SHARE the same memory
= The size of the union is the size of the largest member

Struct Storage in memory

- Struct elements are stored in the order they are declared in

- Total size reserved for a struct variable is not necessarily the
sum of the size of the elements
= Some systems require some variables to be aligned at certain
memory addresses (usually small power of 2)
+ Requires some padding between members in memory = wasted
space
= If members are reordered, it may reduce total number of padding
bytes required
* Usually rule of thumb is to place larger members at the beginning
of definition, and small types (char) last
= Special compller options may allow packing, reducing, or
eliminating padding but may come at a cost in speed as data must
be manipulated

= In 8-Bit AVR with single-byte memory access there will be no
padding

How to Print the Bytes of a Structure to See Padding

Code:
#include <stdioc. h®>
finclude <stdlib.h>

typedef struct dommy tagl {
signed char cl; -
int il;
signed char c2;

} big_t;

typedef struct dummy tag2 {
int ii;
signed char cl;
gigned char cl;

} small t;

int main(){

big t big = {1,-1,1};
small t small = {-1,1,1};

unsigned char * ptrByte; //pointer for accessing individual bytes

ptrByte = (unsigned char *) &big;
printf ("BIG: (3d bytes) :\n", sizecf (big t));
for {(int i=0; i<sizeof(big t) ,i++){
printf ("¥02x\n" , *ptrByte) ;
ptrByte++;
}

ptrByte = (unsigned char *) &small;
printf ("SMALL (¥d bytea) :\n", sizeof (zmall t)};
for (int i=0; i<sizecf{amall &) ;i++}{
printf ("%02x\n" , *ptrByte) ;
pErBytet++;
}

return 0;

Compile:

% goc-Wall -5td=c99 ftest.c

First Call

5 .fa.out
BIG: (12 bytes):
01

0o

oo

0o

ff

ff

ff

ff

01

i

oo

oo
SMALL (8 bytes):
ff

ff

ff

ff

01

01

=)

57

Seccond Call
: Jfa.out
BIG: (12 bytes) :
01

i

oo

i

£ff

£ff

£ff

£ff

01

oo

i

00
SMALL (8 bytes):
£ff

£ff

£ff

£ff

01

01

fa3]

50

Wasted Space for Padding is highlighted red
{platform dependent). The last two bytes of
small are garbage values, illustrated by the
Jjuxtaposition of two successive runs.

Slide borrowed from Dr. Robucci’s 311 course

Examining Bytes of a Union

Code:
#include <stdio.h>
#include <stdlib.h>

typedef union dummy tagl {
signed char cl;
int 11:;

yPT

int main(){

T myUnion;
unsigned char * ptrByte; //variable for pringting bytes

printf ("sizeof (unsigned char) :%d byte\n" ,sizeof (unsigned char)):
printf ("sizecf(int) :%d bytes)\n",sizeof (int)):
printf ("sizeof (T) :%d bytes\n" ,sizecf (T)):

myUnion.il = 0; ffclear all the b
printf ("Cleared Bytes of Union Variable:\n"):
ptrByte = (unsigned char *)&myUnicn;
for (int i=0; i<sizeol (T) i++){
printf ("&02x\n" , *ptrByte++) ;
}

myUnion.cl = -1;
printf ("After setting member cl to -1:%\n");
ptrByte = (unsigned char *)&myUnion;
for (int i=0; i<sizeof (T):i++){

printf {"&02x\n" , *ptrByte) ; ptrByte++;
}

myUnion.il = -1;
printf ("After setting member il teo -1:%\n");
ptrByte = (unsigned char) &myUnion;
for (int i=0; i<sizeof(T) ;i++){
printf ("&02x\n" , *ptrByte) ; ptrByte++;

}
return 0:

Compile:
$ ggc -Wall -std=c99 ./test.c

Run

5 .fa.out

sizeof (unsigned char) :1 byte
gizeof (int) : 4 bytes)

sizeof (T):4 bytes

Cleared bytes of union variable:
oo

oo

oo

oo

After setting member cl to -1:
ff

oo

oo

oo

After setting member il to -1:
ff

ff

ff

ff

Slide borrowed from Dr. Robucci’s 311 course

