
Structs and Unions
C Structures, Unions, Example
Code

Review

• Introduction to C

• Functions and Macros

• Separate Compilation

• Arrays

• Strings

• Pointers

Structs vs Objects

• C is not an OOP language

▫ No way to combine data and code into a single
entity

• Struct – C method for combining related data

▫ All data in a struct can be accessed by any code

Coming from an objected-oriented programming brackground, think of
classes as an extension of struct. Classes have data members but allow
you to restrict access to them while providing a mechanism to organize
and bundle a set of related functions. You can think of a struct as an
OOP class in which all data members are public, and which has no
methods, not even a constructor.

Structs

• A struct represents a block of memory where a
set of variables are stored
▫ Each member of struct has offset from beginning

of struct block determining where data is located

• General form of structure definition:
struct example{
 type ex1;
 type ex2;
};

• Note the semicolon at the end of the definition

Struct Example

• A point in the Euclidean coordinate plane

▫ struct point{

▫ int x; //x-coordinate

▫ int y; //y-coordinate

▫ };

• To create point data types:

▫ struct point p1,p2;

• To access point members:

▫ p2.x, p2.y

Passing Structs to Functions

• Like other variable types, struct variables (e.g.
p1, p2) may be passed to function as parameter
and returned as parameters

▫ The ability to return a struct variable provides
option to bundle multiple return values

• Members of a struct are variables and may be
used like any other variable

▫ i.e. p1.x can be used like any other integer

Struct Function Example
// struct point is a function parameter
void printPoint(struct point aPoint) {
 printf (“(%2d, %2d)”, aPoint.x, aPoint.y);
}
// struct point is the return type
struct point inputPoint() {
 struct point p;
 printf(“please input the x-and y-coordinates: “);
 scanf(“%d %d”, &p.x, &p.y);
 return p;
}
int main () {
 struct point endpoint; // endpoint is a struct point variable
 endpoint = inputPoint();
 printPoint(endpoint);
 return 0;
}

Initializing a Struct

• Struct variables may be initialized when it is
declared by providing the initial values for each
member

▫ E.g. struct point p1 = {-5,7};

• Struct variables may be declared at the same
time the struct is defined

▫ Struct point{ int x, y;} startpoint, endpoint;

 Defines structure point, and point variables
startpoint and endpoint

Typedef and Structs

• Its common to use a typedef for the name of a struct
to make code more concise
▫ typedef struct point{
▫ int x, y;
▫ } POINT_t;

• This defines the structure point, and allows
declaration of point variables using either struct
point, or just POINT_t
▫ E.g. struct point endpoint; POINT_t startpoint;
▫ Same can be done with Enums
 Typedef enum months{} MONTHS_e;

Struct Assignment

• Contents of struct variable may be copied to
another struct variable using assignment (=)

▫ POINT_t p1, p2;

▫ p1.x=15;

▫ p1.y = -12;

▫ p2 = p1; // same as p2.x = p1.x; p2.y = p1.y

• Assignment represents copying a block of
memory with multiple variables

Struct Within a Struct

• A data element in a struct may be another struct

▫ Similar to class composition in OOP

• E.g line composed of points

▫ typedef struct line{ POINT_t start,end} LINE_t;

• Given declarations below, how do you access x
and y coordinates of line

• LINE_t line, line1, line2;

▫ Line.start.x = 13

Arrays of Struct

• Since struct is a variable type, arrays of structs
may be created like any other type

▫ E.g. LINE_t lines[5];

• Code to loop through and print each lines start
point

for(int i = 0; i<5; i++){

 printf(%d,%d\n”,lines[i].start.x, lines[i].start.y);

Example Struct Array Code
/* assume same point and line struct definitions */
int main() {
 struct line lines[5]; //same as LINE_t lines[5];
 int k;
 /* Code to initialize all data members to zero */
 for (k = 0; k < 5; k++) {
 lines[k].start.x = 0;
 lines[k].start.y = 0;
 lines[k].end.x = 0;
 lines[k].end.y = 0;
 }
 /* call the printPoint() function to print
 ** the end point of the 3rd line */
 printPoint(lines[2].end);
 return 0;
}

Arrays Within a Struct

• Structs may contain arrays as well as primitives

typedef struct month{

 int nrDays;

 char name[3+1];

}MONTH_t;

MONTH_t january = {31,”JAN”};

• Note: january.name[2] is ‘N’

Example Struct with Arrays

struct month allMonths[12] =
{31, “JAN”}, {28, “FEB”}, {31, “MAR”},
{30, “APR”}, {31, “MAY”}, {30, “JUN”},
{31, “JUL”}, {31, “AUG”}, {30, “SEP”},
{31, “OCT”}, {30, “NOV”}, {31, “DEC”}
}; //Same as MONTH_t allMonths[12]=…;
// write the code to print the data for September
printf(“%s has %d days\n”,
allMonths[8].name, allMonths[8].nrDays);
// what is the value of allMonths[3].name[1]
printf(“%c\n”,allMonths[3].name[1]);
P
printf(“%s\n”,allMonths[3].name);
APR

Bit Fields

• When saving space in memory or a communications
message is important, we need to pack lots of
information into a small space

• Struct syntax can be used to define “varaibles” which are
as small as 1 bit in size
▫ Known as “bit fields”
Struct weather{
 unsigned int temperature : 5;
 unsigned int windSpeed : 6;
 unsigned int isRaining : 1;
 unsinged int isSunny : 1;
 unsigned int isSnowing : 1;
};

Using Bit Fields

• Bit fields are referenced like any other struct
member

struct weather todaysWeather;

todaysWeather.isSnowing = 0;

todaysWeather.windSpeed = 23;

// etc

If(todayWeather.isRaining)

 printf(“%s\n”, “Take your umbrella”);

More on Bit Fields

• Almost everything about bit fields is
implementation specific

▫ Machine and compiler specific

• Bit fields may only be defined as (unsigned) ints

• Bit fields do not have addresses

▫ & operator may not be applied to them

Unions

• A union is a variable type that may hold different
types of members of different sizes, but only one
type at a time

▫ All member of the union share the SAME memory

▫ Compiler assigns enough memory for the largest
of the member types

▫ Syntax of a union and using its members is the
same as for a struct

Union Definition

• General form of a union definition is

Union ex{

 type member1;

 type member2;

};

• Note that the format is the same as for a struct

• Only member1 or member2 will be in that
memory location

Application of Unions

struct square { int length; };
struct circle { int radius; };
struct rectangle { int width; int height; };
enum shapeType {SQUARE, CIRCLE, RECTANGLE };
union shapes {
 struct square aSquare;
 struct circle aCircle;
 struct rectangle aRectangle;
};
struct shape {
 enum shapeType type;
 union shapes theShape;
};

Application of Unions

double area(struct shape s) {
 switch(s.type) {
 case SQUARE:
 return s.theShape.aSquare.length *
 s.theShape.aSquare.length;
 case CIRCLE:
 return 3.14 * s.theShape.aCircle.radius *
 s.theShape.aCircle.radius;
 case RECTANGLE :
 return s.theShape.aRectangle.height *
 s.theShape.aRectangle.width;
 }
}

Union vs. Struct

• Similarities

▫ Definition syntax nearly identical

▫ Member access syntax identical

• Differences

▫ Members of a struct each have their own address in
memory

▫ Size of a struct is at least as big as the sum of the sizes
of the members

▫ Members of a union SHARE the same memory

▫ The size of the union is the size of the largest member

Struct Storage in memory

• Struct elements are stored in the order they are declared in
• Total size reserved for a struct variable is not necessarily the

sum of the size of the elements
▫ Some systems require some variables to be aligned at certain

memory addresses (usually small power of 2)
 Requires some padding between members in memory = wasted

space
▫ If members are reordered, it may reduce total number of padding

bytes required
 Usually rule of thumb is to place larger members at the beginning

of definition, and small types (char) last
▫ Special compiler options may allow packing, reducing, or

eliminating padding but may come at a cost in speed as data must
be manipulated

▫ In 8-Bit AVR with single-byte memory access there will be no
padding

Slide borrowed from Dr. Robucci’s 311 course

Slide borrowed from Dr. Robucci’s 311 course

