
Real-Time Operating Systems
RTOS – Multitasking on
embedded platforms

Real Time Operating Systems

• Operating systems - Solving problems using
organized tasks that work together

• Coordination requires

▫ Sharing data

▫ Synchronization

▫ Scheduling

▫ Sharing resources

• An operating system that meets specified time
constraints is called a Real-Time Operating
System (RTOS)

Tasks

• Individual jobs that must be done (in coordination) to complete a
large job

• Partition design:

▫ Based on things that could/should be done together

▫ In a way to make the problem easier

▫ Based on knowing the most efficient partitioning for execution

• Example tasks/design partitions for a digital thermometer with
flashing temperature indicator

▫ Detect & Signal button press

▫ Read Temperature & update flash rate

▫ Update LCD

▫ Flash LED

Tasks/Processes

• Tasks require resources or access to resources

▫ Processor, stack memory registers, P.C. I/O Ports,
network connections, file, etc…

• These should be allocated to a processes when
chosen to be executed by the operating system

• Contents of PC & other pieces of data associated
with the task determine its process state

Task Terminology

• Execution Time – Amount of time each process requires
to complete

• Persistence – Amount of time between start and
termination of a task

• Several tasks time-share the CPU and other resources,
execution time may not equal persistence

▫ Ex. Task execution time = 10ms, is interrupted for 6ms
during the middle, persistence = 16ms

• OS manages resources, including CPU time, in slices to
create the effect of several tasks executing concurrently

▫ Cannot operate truly concurrently unless there is a multi-
core processor

Scheduling

• Illusion of concurrent execution can be created by scheduling a
process that move tasks between states

• Options for scheduling strategies

▫ Multiprogramming – tasks run until finished or until they must
wait for a resource

▫ Real-Time – tasks are scheduled and guaranteed to complete with
strict timing specified

▫ Time-sharing – tasks are interrupted, or preempted after
specified time slices to allow time for other tasks to execute

T1

T2

T3

Preempting/Blocking

• To preempt a task:

▫ Save the state of the process – called the context –
including P.C. and registers

• This allows the preempting process to execute
and then restore the preempted task

• Saving of state of one process and loading
another is called “context switching” and is the
overhead of multitasking

Threads

• An organizational concept that is the smallest set
of information about resources required to run a
program

▫ Including a copy of the CPU registers, stack, PC

▫ OS manages several tasks formally as threads

Threads

• Ideally, each process should have its own private section of memory
to work with, called its address space

• Along with hardware support (memory protection unit MPU) an OS
may be able to enforce that process do not access memory outside
their address space

• Organizational Concepts

▫ Multi-process execution – multiple distinct processes running in
separate threads

▫ Multi-threaded process – a process with several execution
threads (likely sharing memory and managing resource use
internally)

▫ Note – intraprocess thread context switching is typically less
expensive than interprocess context switching

Reentrant and Thread Safe Code

• By default all code is not safe to run alongside
other code “simultaneously” or even alongside
itself

• Thread safe code – other threads or processes
can run safely at the same time (safety with
respect to other code)

• Reentrant code – handles multiple simultaneous
calls (safety with respect to same code)

Example

• To allow multiple processes to safely time-share
a resource, an OS typically provides check, lock,
and free utility functions.

int AFunction() { //some function that checks and waits for

// availability of a resources and locks/reserves

// it so other processes won't access it

// -> makes this thread safe

wait_for_free_resource_and_then_lock_access();

do_some_stuff();

//free/unreserve the resource

unlock_some_resource();

}

• This code may not be reentrant

Example – Not Reentrant

• Consider when there are simultaneous calls from
a main thread and an ISR

 Main Thread (in

aFunction):

Wait and Lock

Use

//Interrupted in Use

//Has not freed resource

Free

ISR Thread:

Wait and Lock

//Stuck here waiting for

resource to unlock

Use

Free

Example- Not Thread Safe

int function() {

 char *filename="/etc/config";

 FILE *config;

 if(file_exist(filename)){

// what if file is deleted by another process at this point?

 config=fopen(filename,"r"); //At this point, many OSs will prevent deletion

...use file here..

}

}

• This code can be called over and over in the same process

• What if another thread deletes the file after the handle has been verified but
before it has been used?

▫ Creates a segfault with no way to detect while using it

• To prevent this, a process needs a way to lock a resource to hold its
assumptions

Multitasking Coding Practices

• Dangerous

▫ Multiple calls access the same variable/resource

 Globals, process variables, pass-by-reference
parameters, shared resources

• Safe

▫ Local variables – only using local variables makes
code reentrant by giving each call its own copy

• For example, some string functions (like
strtok()) use global variables and are not
reentrant

Kernel

• The “core” OS functions are as follows

▫ Perform scheduling – Handled by the scheduler

▫ Dispatch of processes – Handled by the dispatcher

▫ Facilitate inter-process communication

• A kernel is the smallest portion of OS providing
these functions

Functions of an Operating System

• Process or Task Management

▫ process creation, deletion, suspension, resumption

▫ Management of interprocess communication

▫ Management of deadlocks (processes locked waiting for resources)

• Memory Management

▫ Tracking and control of tasks loaded in memory

▫ Monitoring which parts of memory are used and by which process

▫ Administering dynamic memory allocation if it is used

• I/O System Management

▫ Manage Access to I/O

▫ Provide framework for consistent calling interface to I/O devices
utilizing device drivers conforming to some standard

Functions of an OS (continued)

• File System Management

▫ File creation, deletions, access

▫ Other storage maintenance

• System Protection

▫ Restrict access to certain resources based on privilege

• Networking -For distributed applications,

▫ Facilitates remote scheduling of tasks

▫ Provides interprocess communications across a network

• Command Interpretation

▫ Accessing I/O devices through devices drivers, interface with user
to accept and interpret command and dispatch tasks

RTOS
• An RTOS follows (rigid) time constraints. Its key defining trait is the

predictability(repeatability) of the operation of the system, not speed.

▫ hard-real time -> delays known or bounded

▫ soft-real time -> at least allows critical tasks to have priority over other
tasks

• Some key traits to look for when selecting an OS:

▫ scheduling algorithms supported

▫ device driver frameworks

▫ inter-process communication methods and control

▫ preempting (time-based)

▫ separate process address space

▫ memory protection

▫ memory footprint, data esp. (RAM) but also its program size (ROM)

▫ timing precision

▫ debugging and tracing

Task Control Block

• The OS must keep track of each task

▫ Task Control Block (TCB) – a structure containing
a task or a process

• Stored in a “Job Queue” implemented with
pointers (array or linked list)

struct TCB {

void(*taskPtr)(void *taskDataPtr); //task function(pointer),one arg.

void *taskDataPtr; // pointer for data passing

void *stackPtr; // individual task's stack

unsigned short priority; // priority info

struct TCB * nextPtr; // for use in linked list

struct TCB * prevPtr; // for use in linked list

}

Task Control Block

• A TCB needs to be generic

▫ A task can be just about anything the computer can do, a generic
template can be used to handle any task

• Each task is written as a function conforming to a generic interface

▫ Void aTask(void * taskDataPtr){

 //task code

▫ }

• Each task’s data is stored in a customized container. The task must know
the structure, but the OS only refers to it with a generic pointer

▫ Struct taskData{

 Int task Data0;

 Int task Data1;

 char task Data2;

▫ }

Kernel Example
• Tasks to be performed for this example:

▫ Bring in some data

▫ Perform computation on the data

▫ Display the data

• First Implementation:

▫ System will run forever cycling through each task calling the task and
letting it finish before moving on

• Second Implementation

▫ Declares a TCB for each task

▫ TCB contains a function pointer for the task

▫ Data to be passed to the task

▫ Task queue implemented using array, each task runs to completion

• Third Implementation

▫ Adds usage of ISR to avoid waiting

Problems

• If any task must wait for something, no other task can run
until the running task no longer needs to wait. This can lead
to system "hanging", trivially waiting on something

• In this case, no updates can happen while waiting on user
input

• Would be better to break task up into two parts:

▫ task: display prompt

▫ task: check if user entered data and move on otherwise ….
implemented using interrupts

• Need ISR

▫ How would you implement this with ISR?

