
Pointers
Pointers, Arrays, and Strings

Review

• Introduction to C

▫ C History

▫ Compiling C

▫ Variables

▫ Logical Operators

▫ Control Structures(loops, if/else)

• Functions and Macros

• Separate Compilation

• Arrays

• Strings

Pointers

• Variable which points to a memory location

• Components

▫ Name – name of the pointer variable

▫ Type – Objective type that the pointer is
addressing

• E.g. int * myPointer;

▫ Variable size in memory is not based on objective
type, but based on potential memory size

▫ Why?

Dereferencing Pointers

• Because a pointer stores a memory location, not
a value, you will need to get access to the value at
that memory location

▫ Called Dereferincing

• Multiple ways to dereference a pointer

▫ Unary operator ‘*’

 *myPtr = 5; //dereference to value at myPtr

▫ Bracket offset

 myPtr[0] = 5; //dereference to value at myPtr +
offset * sizeof(objective_type)

Address of

• Pointers are used to tell the memory location of
a value, however you need to be able to access
the memory location of that value

• & operator

▫ Literally the “address of” the variable

• E.g.

▫ int val = 5;

▫ int* myPtr = &val; //declare a pointer to an
integer and set it equal to the memory location of
val

Pointer Example

• Example Code

int val = 10;

int* myPtr = &val; //declare pointer to val

*myPtr = 5; //dereference pointer and set
 //that location = 5

printf(“val =%d”,val);//print val=(value of val)

• Output

val=5

Objective Type

• The type of variable which is being pointed to or type of array

▫ int* p; //objective type = int

▫ int a[10]; //objective type of a is int

▫ int ** p; // root objective type is int but objective
 //type of p is int *

• Adding 1 to a pointer variable actually increments by the size
of the objective type

▫ Incrementing an int* on GL increments the value by 4 (size
of int)

▫ Incrementing an int** on GL increments the value by 8
(size of int*)

Pointers and Arrays

• Strong relationship between pointers and arrays

• E.g

▫ int a[10]; //creates array of 10 integers

▫ int* p; //creates a pointer to an int

▫ p=a; // assigns the memory location of the first
 //element of the array to p, therefore making
 //p an alias for a, reference array using p or a

▫ int x = p[3]+a[4]; //same as a[3]+p[4]

• p=a can also be written p=&(a[0]) or p=&a[0]

Pointers and Arrays

• Name of array is equivalent to pointer to first element of
array and vice-versa

• Therefore if a is the name of an array, a[i] is equivalent
to *(a+i)

• It follows then that &a[i] and (a+i) are also equivalent

▫ Both represent address of i-th element beyond a

• Additionally, if p is a pointer, then it may be used with a
subscript as if it were the name of an array

▫ p[i] is identical to *(p+i)

• In short, an array-and-index expression is
equivalent to a pointer-and-offset expression

What is the difference?

• If name of array is synonymous with a pointer to the first
element of the array, and function parameters defined as
arrays are “almost” like pointers, what is the difference
between array name and a pointer?

▫ Array name can only “point” to the first element of its
array, a pointer may be changed to point to any
variable or array of the appropriate type

▫ E.g.

 int vec[3] ={1,2,3};

 Vec = &value; //can’t do this

Example
int g, grades[] = {10, 20, 30, 40 }, myGrade = 100, yourGrade = 85, *pGrades;

/* grades can be (and usually is) used as array name */

for (g = 0; g < 4; g++)

printf(“%d\n”,grades[g]);

/* grades can be used as a pointer to its array if it doesn’t change*/

for (g = 0; g < 4; g++)

printf(“%d\n”, *(grades + g));

/* but grades can’t point anywhere else */

grades = &myGrade; /* compiler error */

/* pGrades can be an alias for grades and used like an array name */

pGrades = grades; /* or pGrades = &(grades[0]); */

for(g = 0; g < 4; g++)

printf(“%d\n”, pGrades[g]);

/* pGrades can be an alias for grades and be used like a pointer that changes */

for (g = 0; g < 4; g++)

printf(“%d\n”,*(pGrades++));

/* BUT, pGrades can point to something else other than the grades array */

pGrades = &myGrade;

printf(“%d\n”, &pGrades);

pGrades = &yourGrade;

printf(“%d\n”, &pGrades);

Pointer Arithmetic

• Remember, incrementing a pointer by i actually increments
the memory address by (i*(objective_type_size))

• E.g.

▫ char c, *cPtr = &c;

▫ int i, *iPtr = &I;

▫ double d, *dPtr = &d;

▫ printf(“%p,%p,%p”,cPtr++,iPtr++,dPtr++);

▫ printf(“%p,%p,%p”,cPtr,iPtr,dPtr);

• Output

▫ 0x01,0x02,0x06

▫ 0x02,0x06,0x0E

Array as a Parameter

• With respect to a function’s formal parameters only, C
treats an array just like a pointer unlike other arrays

▫ Therefore, you can change the value of the array name
passed as parameter

 Generally a bad idea, it serves no particular purpose

• E.g.

void testFunction(int array[]){

int i;

array = &i; //does not throw error

}

Arrays as a Parameter

• When array is passed to a function, address of the array is
copied onto the function parameter

▫ i.e. pointer

• Therefore, function parameter may be declared in either
fashion

▫ int sumArray(int a[], int size);

▫ int sumArray(int *a, int size); //equivalent

▫ Code in function is free to use “a” as an array name or a
pointer as it sees fit

• Compiler will always see array parameter as a pointer and
error messages produced will refer to it as int* instead of
array

Example

Int sumArray(int a[], int size){

Int k, sum = 0;

For (k=0;k<size,k++)

sum+= a[k];

Return sum;

}

• Note that the size needs to be passed as a parameter
which isn’t typically required in high-level languages

▫ Compiler does not know size of array, only knows
address and type of first component

Array Sizes

• Managing array sizes in C is not a minor issue

• Going outside bounds of an array is not automatically
checked, and can lead to serious program or system crashes

• Basic approaches for design of functions using arrays:

▫ Use extra parameter to convey number of elements in array

▫ Use termination value in array itself that can be discovered

 Similar to null termination character in string

▫ Use predetermined size for the array or some other
predetermined method for determining it

 Global cosntants

Strings and Pointers

• Recall that a string is represented as an array of
characters terminated with null character

• A string constant may be declared as either
char[] or char*

▫ E.g. char hello[] = “Hello!”; char* hello = “Hello!”

 Almost equivalent

• Using a typedef could also be used to simplify
coding

▫ typedef char* STRING; STRING hello = “Hello!”;

Example

• What does the following code do?
char hello[] = “Hello!”;

char * ptrChar;

ptrChar = &(hello[3]);

//What is printed from each of the following?

printf("%s\n",hello);

printf("%s\n",ptrChar);

printf("%s\n",&(hello[3]));

printf("%s\n",hello + 3);

printf("%s\n",hello[3); //x

Arrays of Pointers

• Since a pointer is a variable type, we can create
an array of pointers just like we can create an
array of other types

• Common to use an array of pointers of type
char*

▫ Used to create an array of strings

Array of Pointers example

• char *ravens[] = {“Flacco”,”Smith”,”SmithSR”}

Almost equivalent to

• char **ravens= {“Flacco”,”Smith”,”SmithSR”}

▫ As a parameter *ravens[] produces **ravens

• Often seen for parameters for main functions

▫ Int main(int argc, char* argv[])

▫ Int main(int argc, char ** argv)

#include <stdio.h>

#include <stdlib.h>

int main(){

char * name[]={“Flacco",“Smith",“SmtihSR" }; //may be //stored in
read-only memory

printf("%s",name[1]);

fflush(stdout); //needed to ensure output displayed before // seg fault
(useful note for projects)

name[1][2]='r'; // here

printf("%s”,name[1]);

return 0;

}

Command Line Arguments

• Command Line Arguments are passed to your program as
parameters to main

▫ Int main(int argc, char* argv[])

 Argc is # of arguments (size of argv)

 Argv is an array of strings which are command line
arguments

 Argv[0] is always name of your executable program

• E.g. Typing myprog hello world 42 at linux prompt results in

▫ argc=4

▫ argv[0] = “myprog”, argv[1] = “hello” argv[2] = “world”,
argv[3] = “42”

