
Memory types CMPE 311

General Concepts

- A memory is an array of storage locations
 - Each with a unique address
 - Like a collection of registers, but with optimized implementation
- Address is unsigned-binary encoded
 - *n* address bits $\Rightarrow 2^n$ locations
- All locations the same size
 - $2^n \times m$ bit memory

Memory Sizes

- Use power-of-2 multipliers
 - Kilo (K): 2¹⁰ = 1,024 ≈ 10³
 - Mega (M): 2²⁰ = 1,048,576 ≈ 10⁶
 - Giga (G): $2^{30} = 1,073,741,824 \approx 10^9$
- Example
 - 32K × 32-bit memory
 - Capacity = 1,024K = 1Mbit
 - Requires 15 address bits
- Size is determined by application requirements

Basic Memory Operations

d_out(0)

d_out(1)

 $d_out(m-1)$

- a inputs: unsigned address
- d_in and d_out
 - Type depends on application
- Write operation
 - en = 1, wr = 1
 - d_in value stored in location given by address inputs
- Read operation
 - en = 1, wr = 0
 - d_out driven with value of location given by address inputs
- Idle: en = 0

Digital Design — Chapter 5 — Memories

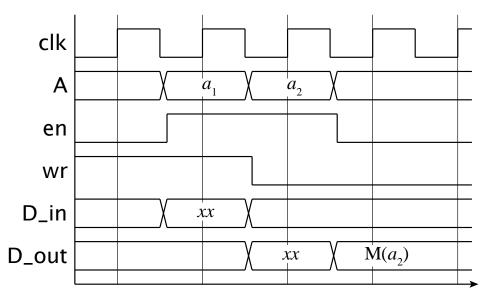
a(0)

a(1)

a(n-1)

d_in(0) d_in(1)

en


wr

d_in(*m*-1)

Synchronous SRAM (SSRAM)

- Clocked storage registers for inputs
 - address, data and control inputs
 - stored on a clock edge
 - held for read/write cycle

 Flow-through SSRAM
no register on data output

Digital Design — Chapter 5 — Memories

Memory Types

- Volatile and non-volatile
 - Volatile: only maintains its data while the device is powered, Ex: RAM
 - Non volatile: can maintain stored information even after having been <u>power</u> <u>cycled</u> (turned off and back on), Ex: ROM, Flash
- Random-Access Memory (RAM)
 - Can read and write
 - Static RAM (SRAM)
 - Stores data so long as power is supplied
 - Asynchronous SRAM: not clocked
 - Synchronous SRAM (SSRAM): clocked
 - Dynamic RAM (DRAM)
 - Needs to be periodically refreshed
- Read-Only Memory (ROM),
- Programmable read only memory (PROM)
- Erasable PROM (EPROM)
- Electronically Erasable PROM (EEPROM)

Electrically erasable programmable read-only memory (EEPROM)

- remove the biggest drawbacks of EPROMs: ease of programmability.
- The chip does not have to removed to be rewritten.
- The entire chip does not have to be completely erased to change a specific portion of it.
- Changing the contents does not require additional dedicated equipment.
- EEPROM chips are too slow to use in many products that make quick changes to the data stored on the chip.

Flash

• Flash memory, a type of EEPROM that uses in-circuit wiring to erase by applying an electrical field to the entire chip or to predetermined sections of the chip called **blocks**. Flash memory works much faster than traditional EEPROMs because it writes data in chunks, usually 512 bytes in size, instead of 1 byte at a time

Memory Comparison table

Memory type	Read speed	Volatility	density	rewrite
SRAM	+++	-	-	++
DRAM	+		++	++
EPROM	+	+		-
EEPROM	+	+		+
Flash	+	+	+	+