
C Programming and Embedded

Systems
Instructor: Tinoosh Mohsenin

Modified from slides by Alexander Nelson

What is an Embedded System?

• Loose Definition:
▫ A system which is part of a larger system

• What does that actually mean
▫ Hardware/Software co-design

 Usually with specific purpose
 Usually special set of constraints (size/power/time)

▫ From Wiki:
 An embedded system is a computer system with a dedicated

function within a larger mechanical or electrical system, often
with real-time computing constraints. It is embedded as part of
a complete device often including hardware and mechanical
parts. Embedded systems control many devices in common use
today.

• Can be based on microcontroller, DSP, ASICs, even
standard Microprocessor unit(MPU)

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Real-time_computing

Examples

*Image credit to Fitbit, Arduino, Google, ford, we-online, Acorn Instruments, Raspberry Pi and used under Fair Use law. I do not claim ownership to any of these images

Market Share

• Embedded industry represents about $17 billion
in revenue per year

▫ Compare to $19 B for cellphone processors

▫ Compare to ~$25 B for non-mobile, non-
embedded MPUs

• Embedded Systems outnumber other MPUs by
over 100:1

Data pulled from icinsights.com

Trends in Cellphone Chip Integration

 Chip integration is increasing every generation

 Cell phone size is decreasing

 Users want more features every generation

 Power budget is very limited

Y. Neuvo, ISSCC 2004

1993 iPhone

Integrated
Transceiver

Cellphone Architecture Example

 Cellphone chips have multiple processing cores and
support multiple applications and features

 Ex: Integrated Transceiver: WiFi (802.11a/b/g), Bluetooth, FM

6

Smart Health Monitoring: Analysis & Delivery

• Wearable medical monitoring systems
▫ Reliable and seamless monitoring integrated into patients daily life

routine

• Data analysis
▫ Real-time data analysis and diagnosis for efficient healthcare delivery

• Data delivery
▫ Real time data transmission to healthcare providers (e.g. nurses, primary

care physicians, and first responders) through networks and immediate
therapy through smart drug delivery

7

Military & Aerospace Telemedicine

Key Objectives
• High performance: 10-100 GOPS

• Energy efficiency: 100-1000 GOPS/W

• Area efficiency: 10-100 GOPS/mm2

• Programmability

µC/

Microprocessor Based Embedded Systems

Microprocessor

Minimal embedded System
I/O Interfaces

Communications

DAC

ADC

Other Peripherals

Embedded into
microcontrollers

Clock/Time

Watchdog Timer

Bus Logic
(Address, Data,

Control)

Digital I/O

Data RAM

Program ROM

Typical BUS structure comprising Address, Data and control signals

Data movement over an 8-bit Bus

Example:

For (i=0; i<8; i++)
{

printf (“%i”, a[i]);
}

Microcontroller block diagram

fig_01_11

Big Endian
In big endian, you store the
most significant byte in the
smallest address

Little Endian
In little endian, you store
the least significant byte in
the smallest address

Memory-General Concepts

• A memory is an array of
storage locations
▫ Each with a unique address

▫ Like a collection of registers,
but with optimized
implementation

• Address is unsigned-
binary encoded
▫ n address bits ⇒ 2n locations

• All locations the same size
▫ 2n × m bit memory

0

1

2

3

4

5

6

2n–2

2n–1

m bits

Memory Sizes

• Use power-of-2 multipliers
▫ Kilo (K): 210 = 1,024 ≈ 103

▫ Mega (M): 220 = 1,048,576 ≈ 106

▫ Giga (G): 230 = 1,073,741,824 ≈ 109

• Example
▫ 32K × 32-bit memory

▫ Capacity = 1,024K = 1Mbit

▫ Requires 15 address bits

• Size is determined by application requirements

Basic Memory Operations

• a inputs: unsigned address
• d_in and d_out

▫ Type depends on application
• Write operation

▫ en = 1, wr = 1
▫ d_in value stored in location given

by address inputs
• Read operation

▫ en = 1, wr = 0
▫ d_out driven with value of location

given by address inputs
• Idle: en = 0

a(0)

… …a(1)

en

wr

a(n–1)

d_in(0)

… …d_in(1)

d_in(m–1)

d_out(0)

…

…d_out(1)

d_out(m–1)

Int myVar=10

Int* myVarPtr=&myVar // take the

//address of myVar assign it to the

//pointer variable myVarPtr

The example places the integer
value 10 in binary into some
location e.g address 3000

When interpreted by the system,
the code directs the system to
set aside another memory word
to hold the address

Why Microcontrollers?

• Peripheral loaded
▫ ADC, DAC, GPIOs, Serial Interfaces

• Cheap
▫ ~$1 for 8-bit processor

• Relatively Simple and Low Power
▫ ~300µA operation (1 AA battery for 275 days,

depending on the application)
▫ <1µA sleep (1 AA battery for 225 years)

• Programmable
▫ Assembly or C

Our Microcontroller

• AVR Butterfly
▫ ATMEGA 169PV chip
▫ Built-in peripherals

 120 segment LCD Screen
 Joystick
 Piezo element – sounds

• Programmer
▫ AVR Dragon

• These boards will be used for projects and
discussions

