
Interrupts
Hardware and Software interrupts
and event-driven programming

References and Resources

• Introduction to Embedded Programming ASM and C examples

▫ http://www.scriptoriumdesigns.com/embedded/interrupts.php

▫ http://www.scriptoriumdesigns.com/embedded/interrupt_examples.phpinterrupt examples

• GNU C Programming:

▫ http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

• Newbie's Guide to AVR Interrupts

▫ http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=89843

• Using Interrupts

▫ http://www.pjrc.com/teensy/interrupts.html

• Interrupt driven USARTs

▫ http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=48188>

• Atmega169P Datasheet

▫ http://www.atmel.com/dyn/resources/prod_documents/doc8018.pdf

• Beginners Programming in AVR Assembler

▫ http://www.avr-asm-tutorial.net/avr_en/beginner/RIGHT.html

• Code segments cseg and org

▫ http://www.avr-asm-tutorial.net/avr_en/beginner/JUMP.html

• A Brief Tutorial on Programming the AVR without Arduino

▫ https://www.mainframe.cx/~ckuethe/avr-c-tutorial/

What is an Interrupt?

• An interrupt is a signal (an “interrupt request”)
generated by some event external to the CPU

• Causes CPU to stop currently executing code and
jump to separate piece of code to deal with the
event

▫ Interrupt handling code often called an ISR
(“Interrupt Service Routine”)

• When ISR is finished, execution returns to code
running prior to interrupt

Interrupt Overview

• Interrupt Sequence

▫ Interrupt Event

▫ Interrupt Request

▫ Interrupt Service Routine

• Varying number of ISRs may be supported

▫ Typically between 1-16 depending on platform

• Multiple events may be mapped to a single routine

▫ i.e. any PORTA pin change

• Interrupt events may have priorities

• ISR is implemented inside a function with no parameters and no
return value (void)

• Typically keep interrupt routines shorter than 15-20 lines of code

Interrupt Sources

• Hardware Interrupts

▫ Commonly used to interact with external devices or peripherals

▫ Microcontroller may have peripherals on chip

• Software Interrupts

▫ Triggered by software commands, usually for special operating system
tasks

 i.e. switching between user and kernel space, handling exceptions

• Common hardware interrupt sources

▫ Input pin change

▫ Hardware timer overflow or compare-match

▫ Peripherals for serial communication

 UART, SPI, I2C – Rx data ready, tx ready, tx complete

▫ ADC conversion complete

▫ Watchdog timer timeout

Advantage Over Software Polling

• Interrupts avoid writing software code in such a
way that the processor must frequently spend
time checking the status of input pins or
registers

▫ Lets custom hardware do that

• Polling often has a “busy-wait”

▫ CPU executes instructions waiting for event

Interrupt Servicing Flow

• Normal execution flow:

• Interrupt Check Flow:

• After executing each instruction, check for any
pending interrupts

▫ If there is an interrupt, save PC and load address
of ISR into PC

• After handling the interrupt, old PC is restored
and execution of program resumes

Interrupt Vector Table

• Mapping of interrupt events/requests to
functions is handled with an interrupt vector
table

▫ A table of function pointers

▫ Interrupt system calls correct function
from a table based on event that occurred

• Just like a function call, system state should
be pushed onto the stack as needed to
return and continue execution

• When a routine is called, it is said the
interrupt has been “handled” or “serviced”

Implementations of Interrupt

Vector Table
• Vector tables may be implemented as simple

function addresses or instructions (typically an
unconditional jump) depending on system

• Vector holds jump to ISR

▫ .org This_Vector_Address

▫ VN: jmp VISR ;jump to ISR

▫ …

▫ VISR: ISR for Interrupt N

• Vector holds address of ISR

▫ .org This_Vector_Address

▫ VN: VISR ;address of ISR

▫ …

▫ VISR: ISR for Interrupt N …

AVR Interrupt Vector Table

• On AVR, interrupt
vector table is
implemented at the
top of program
memory with jmp
instructions that are
listed at beginning of
program memory,
position determines
the interrupt number

Coding Interrupts in AVR Assembly
If using interrupts

• Must provide system reset vector at .org 0x0000 with jmp to main

▫ .org 0x0000

▫ jmp Main

• Provide vector table entry of interest

▫ .org URXCOaddr

▫ jmp myISRHandler

• Provide Handler

▫ myISRHandler:

▫ ; ISR code to execute here

▫ reti;

• Interrupts must be enabled globally in main or elsewhere

▫ Main:

▫ sei; Enable Global Interrupts

• Enable specific interrupts in control registers in main or elsewhere

▫ in r16, UCSRB

▫ ori r16, (1<<RXCIE)

▫ out UCSRB, r16

Coding Interrupts in AVR C

• Include interrupt macros and device vector definitions

▫ #include <avr/interrupt.h>

▫ #include <avr/io.h>

• Define ISR using macro and appropriate vector name: by default the
compiler determines all registers that will be modified and saves them
(prologue code) and restores them for you (epilog)

▫ ISR(UART0_RX_vect){

▫ // ISR code to execute here

▫ }

• Somewhere in main or function code

▫ sei(); //Enable global interrupts

• Enable specific interrupts of interest in corresponding control registers. Ex:

▫ UCSRB |= (1<<RXCIE); //enable interrupt

Keeping ISR Short

• ISRs affect the normal execution of program and can
block handling of other interrupts

• Common strategy for ISR is to keep it as short as
possible

• Creates stable timing and avoids system from being
flooded with handling certain ISRs and not being able to
service other interrupts fast enough

• Each ISR should do only what it needs to do at the time
of the event

• If long ISRs are needed, consider allowing nested
interrupts

Critical Sections of Code

• A critical section is a section of code which must
have complete and undisturbed access to a block
of data or any other resource

Interaction of ISR and variables

• Use of volatile keyword to prevent erroneous
optimization by the compiler for any shared
variables

• volatile uint8_t c;

• ISR code :

▫ c=c+1;

• Main:

▫ c = 10;

▫ c=c+1;

ISRs and multiword code

• Global declaration

▫ volatile uint16_t c;

• ISR code:

▫ if(c==0x100)

▫ PORTB = 1;

• Main:

▫ c = 0x01FF;

▫ c= c+1;

Atomic Resource Access

• Once you start using interrupts you must be sensitive to
code that it is not OK to interrupt

▫ During execution of such code, some interfering ISRs
should be blocked

• Alternatively, resources like shared variables or hardware
registers may be protected form multiple interfering access
by using additional code to flag access to shared resource

• Simplest way to guarantee ATOMIC access is to
temporarily disable interrupts

• AVR gcc provides a macro “ATOMIC_BLOCK” to disable
interrupts

Multiple Pending Interrupts in AVR

• If multiple interrupt requests are pending, the
order in which they are handled is system
dependent

▫ Some predefine priorities based on event number

▫ Others allow software defined priorities

• AVR uses lowest-addressed vector

▫ Execution flow returns to main allowing at least
one ASSEMBLY instruction to run before
handling next IRQ

New Interrupts during ISR

• What about new interrupts during ISR execution

▫ If interrupt service routines are (by default)
interrupted by higher priority interrupts or at all is
system-dependent. You must make yourself aware
of how a given system handles interrupts

• AVR interrupts are disabled by default when ISR
is called until RETI is encountered

Interrupt Enabling

• Typically, methods exist to globally disable or enable interrupts (AVR
provides sei,cli in asm and C).

• Furthermore, individual Interrupts can be enabled/disabled according to
the status of certain flag bits which may be modified.

• It is common to set the enable bits for all the individual interrupts that
should be initially enabled and then set the global interrupt enable.

• Other interrupts can be enabled and disabled as needed.

• You may temporally disable individual interrupts as needed

• You may temporally disable all interrupts using global enable/disable
commands

• Many systems disable interrupts upon invoking an ISR (or at least
temporarily disable interrupts after an ISR is called to allow the coder to
disable them for longer if desired) to prevent other interrupt service
routines.

Interrupt Mask Registers

• Interrupt Mask Registers

▫ Potential to enable or disable groups of interrupts
through a masking process

• Interrupts can be disabled when

▫ Not needed or used

▫ Critical section of code is running

 Can’t be interrupted because of trimming or order of
operations

Clearing the Interrupt Flag (IRQ)

• When ISR is called, the corresponding interrupt flag
must be cleared or the ISR would be called again

• Depending on the system, the flag may be cleared

▫ Automatically by hardware

▫ Require that software for an ISR must handle clearing
the flag

• AVR clears the flag automatically using hardware as
soon as the ISR is called

▫ Means that if multiple interrupts are mapped to the
same ISR there is no way to tell in the ISR itself which
event triggered it

Interrupt Sequence (AVR)

• With interrupts enabled and foreground code running, an Interrupt Event occurs

▫ A request is flagged by the hardware

• Current Instruction Completed (machine instruction, which is NOT same as a line of
C code)

• Address of next instruction is stored on the stack

• Address of ISR is loaded into PC and Global Interrupt Enable Bit is Cleared and
Specific Interrupt Flag is Cleared automatically indicating it has been handled

• Processor Executes ISR

▫ If desired, interrupts should be be reenabled with sei() command to allow the ISR itself to be
interrupted (if writing C, avr-gcc provide macro for this)

▫ If any state registers should be saved because they will be changed, they must be explicitly
saved (if using C avr-gcc provides macros that do this)

• reti is encountered (C macros take care of including this)

• PC loaded from stack and Global Interrupt Enable Bit is Set

• Foreground code execution continues

Interrupt Response Time (AVR)

• The interrupt execution response for all the enabled AVR interrupts is four clock
cycles minimum. After four clock cycles the program vector address for
the actual interrupt handling routine is executed.

• During this four clock cycle period, the Program Counter is pushed onto the
Stack.

• The vector is normally a jump to the interrupt routine, and this jump takes three
clock cycles. If an interrupt occurs during execution of a multi-cycle instruction,
this instruction is completed before the interrupt is served.

• If an interrupt occurs when the MCU is in sleep mode, the interrupt execution
response time is increased by four clock cycles. This increase comes in addition
to the start-up time from the selected sleep mode.

• A return from an interrupt handling routine takes four clock cycles.

• During these four clock cycles, the Program Counter (two bytes) is popped back
from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is
set.

• Pasted from datasheet

Questions for ISR coding

• How are ISRs and the interrupt vector table defined?

• Are there priorities of interrupts and how are they defined?

• Nested Interrupts: Do you want them and are they enabled by default? Do
you need to enabled or disable interrupts be to allow nested interrupts?

▫ In AVR, interrupts are disabled when an interrupt routine is called, so
you need to explicitly call sei() in ISR if desired

• Which interrupts should be enabled?

▫ Should only certain interrupts should be enabled? May be a mechanism
to allow int. ISRs based on priority. Otherwise, may be able to manually
enabled selected interrupts

• How is the state restored and what side effects can be caused when
interrupts are called?

▫ Generally, ISRs should save and restore status registers and any registers
it uses for work. Can use stack or RAM for this.

Questions (continued)
• Where, if anywhere, should interrupts be disabled?

▫ Main code, with atomic or critical sections of code should disable
interrupts. May be related to timing or need to access a set of resources
without any interruptions to avoid invalid states or just to achieve proper
sequences of operations to peripheral hardware.

• How are interrupts flagged as being serviced?

▫ Should interrupts do something to indicate IRQ has been handled?
Usually handled automatically internally by processor, but if request is
coming from external device it may need a signal that the request has
been handled.

• Do interrupt service routines need to set some flag to indicate further action
to be taken by main code or peripheral?

