
Functions, Separate

Compilation, Macros

Review

• Introduction to C
▫ C History
▫ Compiling C
▫ Identifiers
▫ Variables
 Declaration, Definition, Initialization

 Variable Types

▫ Logical Operators
▫ Control Structures
 i.e. loops

▫ Functions

C Functions

• Have a:

▫ Name

▫ Return Type

▫ Parameters

• Uniquely identified by name

▫ No overloading

▫ E.g. - this is invalid

 int MyAddition(int a, intb);

 char MyAddition(char a, charb);

Function Arguments

int ArraySum(int array[], int size){
int k, sum=0;
for (k=0; k<size; k++)
 sum+= array[k];
return sum;

}
int main(){
 int ages[6] = {19,18,17,22,44,66};
 int sumAge = ArraySum(ages,6);
 printf(“The sum of ages is %d\n”,sumAge);
 return 0;
}

Function Reuse

• Some functions are general functions that may be
used by multiple applications

▫ E.g. CircleArea, Circumference

• To make them available to multiple applications,
must be placed in separate .c file

• Compiler requires that function prototype is
provided

▫ Place prototypes and supporting declarations in .h file

▫ .h file included in .c files that wish to call the functions

Function Reuse

/* circleUtils.c */

#include
“circleUtils.h”
….

/* function
definitions*/

/* circleUtils.h */

/* function
prototypes */

/* example.c */

#include
“circleUtils.h”
…
…

int main(){
….
…
/* code with
function calls */
…
…
}

In example.c, the circle
functions “ CircleArea”
and “Circumference” are
to be used.

By including
“circleUtils.h” the
prototypes are
referenced. The actual
definition, then, is in the
.c file

Header File

• A header file (.h) contains everything necessary to
compile a .c file that includes it

/* circleUtils.h */
/* #includes required by the prototypes, if any */
/* supporting typedefs and #defines */
typedef double Radius;

/* function prototypes */
// given the radius, returns the area of a circle
double CircleArea(Radius radius);
// given the radius, calculates the circumference of a circle
double Circumference(Radius radius);

Header File

• Each .h file should be “stand alone”

▫ It should declare, #define, and typedef anything
needed by prototypes and include any .h files it
needs to avoid compiler errors

• In our example prototypes for CircleArea() and
Circumference are placed in circleUtils.h

▫ circleUtils.h included in circleUtils.c

▫ circleUtils.h included in any other .c file that uses
CircleArea() or Circumference()

Guarding Header Files

• A .h file may include other .h files
▫ Possibility that one or more .h files may included by a

single .c file more than once
 Compiler error – “multiple name definitions”

• To avoid errors .h files should be guarded
▫ “#ifndef” and “#endif”
 If not defined

• Other compiler directives
▫ “#ifdef” – if defined
▫ “#else”
▫ “#elif” – else if

Guarding Example

#ifndef CIRCLEUTIL_H
#define CIRCLEUTIL_H
/* circleUtils.h */
/* include .h files as necessary */
/* supporting typedefs and #defines */
typedef double Radius;
/* function prototypes */
// given the radius, returns the area of a circle
double Area(Radius radius);
// given the radius, calcs the circumference of a circle
double Circumference(Radius radius);
#endif

Separate Compilation

• If code is separated into multiple .c files

▫ Must compile each .c file

▫ Combine resulting .o files to create executable

• Files may be compiled separately and then
linked together

▫ -c flag tells gcc to “compile only”

▫ Creates .o files

Separate Compilation Example

gcc -c -Wall circleUtils.c //creates .o file

gcc -c -Wall sample.c //creates .o file

gcc -Wall -o sample sample.o circleutils.o

• OR if only a few files, compiling and linking can
be done in one step

▫ gcc -Wall -o sample sample.c circleUtils.c

Program Organization

• main is generally defined in own .c file

▫ Calls helper functions

• Program-specific helper functions in another .c file

▫ E.g. example1Utils.c

▫ If there are very few helpers, they can be in the same
file as main

• Reusable functions in own .c file

▫ Group related functions in same file

• Prototypes, typedefs, #defines, for reusable function
in .h file

Scope/Lifetime

• Variable “scope” refers to part of the program
that may access the variable

▫ Local, global, etc…

• Variable “lifetime” refers to time in which a
variable occupies memory

• Both determined by how and where variable is
defined

Global Variables

• Global (external) variables are defined outside of
any function, typically near the top of .c file
▫ May be used anywhere in the .c file in which they are

defined
▫ Exist for the duration of your program
▫ May be used by any other .c file in your application

that declares them as “extern” unless also defined as
static

• Static global variables may only be used in .c file that
declares them
▫ “extern” declarations for global variables should be

placed into a header file

Local Variables

• Defined within opening and closing braces of
function, control-structure, etc…
▫ Are usable only within the block in which they are

defined
▫ Exist only during the execution of the block unless also

defined as static
▫ Initialized variables are reinitialized each time the

block is executed if not defined as static
• Static local variables retain their values for the

duration of the program
▫ Usually used in functions to retain values between

calls to function
• Function parameters are local to the function

Static Variables

• Static variables are initialized to zero upon
memory allocation

▫ Good style to explicitly code it to make clear-zero
initialization was intended

▫ May initialize to other constants

▫ Exception – pointers variables initialize to NULL

Static Example

int trackTillTen(){
static int i = 1;
if (i>10) return(1);
i++;
return(0);

}
int main(){

int i = 0;
while(i==0) i=trackTillTen();

}

Function Scope

• All functions are external
▫ C does not allow nesting of function definitions
▫ No “extern” declaration is needed
▫ All functions may be called from any .c file in your

program UNLESS they are also declared as static

• Static functions may only be used within .c file in
which they are defined

• Exception: GNU C will allow nested helper functions
inside other functions only usable inside that
function. Not part of C standard – not portable

Recursion

• C functions may be called recursively
▫ Typically called by itself

• A properly written recursive function has the
following properties
▫ A “base case” – a condition which does NOT make a

recursive call because a simple solution exists
▫ A recursive call with a condition (usually a parameter

value) that is CLOSER to the base case than the
current condition

• Each invocation of the function gets its own set of
arguments and local variables

Recursion Example

/* print an integer in decimal
** K & R page 87 (may fail on largest negative int) */
#include <stdio.h>
void printd(int n){
 if (n < 0){
 printf(“-”);
 n = -n;
 }
 if (n / 10) /* (n / 10 != 0) --more than 1 digit */
 printd(n / 10); /* recursive call: n has 1 less digit */
 printf(“%c”, n % 10 + ‘0’); /* base case ---1 digit */
}

Inline Functions

• C99 Only
• Short functions may be defined as “inline”

▫ Suggestion to compiler that calls to the function
should be replaced by body of the function
 Suggestion, not a requirement

• Inline functions provide code the structure and
readability advantages of using functions without
overhead of actual function calls
▫ i.e. inline bool isEven(int n);

• Generally, inline is more important in embedded
environments than in other environments

Macros

• C provides macros as an alternative to small
functions

▫ More common prior to C99 (inline functions)

• Handled by preprocessor

• Inline functions are usually better

▫ Some situations macros don’t handle well

• Macro format

▫ #define NAME(params (if any)) code here

 Note: no space b/w name and left paren

Macro Example

• #define SQUARE(x) (x*x)
• Like all #defines, the preprocessor performs text

substitution. Each occurrence of the parameter
is replaced by argument text
▫ int y=5; int z=SQUARE(y);

• NEVER FORGET THE ()
▫ #define DOUBLE_IT(x) x+x
▫ Will inevitably be called with
▫ X =DOUBLE_IT(x)*3
 Becomes x = x+x*3

