Functions, Separate
Compilation, Macros

Review

- Introduction to C

s C History
Compiling C
Identifiers
Variables
+ Declaration, Definition, Initialization
» Variable Types
Logical Operators
Control Structures
- i.e. loops
Functions

O

a

O

O

a

a

C Functions

- Have a:
= Name
= Return Type
= Parameters
- Uniquely identified by name
= No overloading
= E.g. - thisisinvalid
- int MyAddition(int a, intb);
- char MyAddition(char a, charb);

Function Arguments

int ArraySum(int array]], int size){
int k, sum=0;
for (k=0; k<size; k++)

sum+= array[k];

return sum;

}

int main(){
int ages[6] = {19,18,17,22,44,66};
int sumAge = ArraySum/(ages,6);
printf(“The sum of ages is %d\n”,sumAge);
return oO;

b

Function Reuse

Some functions are general functions that may be
used by multiple applications

= E.g. CircleArea, Circumference

To make them available to multiple applications,
must be placed in separate .c file

Compiler requires that function prototype is
provided

= Place prototypes and supporting declarations in .h file
= .h file included in .c files that wish to call the functions

Function Reuse

/* circleUtils.h */ /* example.c */ In example.c, the circle
functions “ CircleArea”
/* function #include and “Circumference” are
prototypes */ “circleUtils.h” to be used.
By including
/* circleUtils.c */ “circleUtils.h” the
int main(){ prototypes are

referenced. The actual
definition, then, is in the
.c file

#include
“circleUtils.h”

/* code with
function calls */

/* function
definitions*/

Header File

A header file (.h) contains everything necessary to
compile a .c file that includes it

/* circleUtils.h */

/* #includes required by the prototypes, if any */
/* supporting typedefs and #defines */

typedef double Radius;

/* function prototypes */

// given the radius, returns the area of a circle

double CircleArea(Radius radius);

// given the radius, calculates the circumference of a circle
double Circumference(Radius radius);

Header File

Each .h file should be “stand alone”

= It should declare, #define, and typedef anything
needed by prototypes and include any .h files it
needs to avoid compiler errors

In our example prototypes for CircleArea() and

Circumference are placed in circleUtils.h

s circleUtils.h included in circleUtils.c

s circleUtils.h included in any other .c file that uses
CircleArea() or Circumference()

Guarding Header Files

A .h file may include other .h files
= Possibility that one or more .h files may included by a
single .c file more than once
 Compiler error — “multiple name definitions”
To avoid errors .h files should be guarded
» “#ifndef” and “#endif”
+ If not defined
Other compiler directives
o« “#ifdef” — if defined
o« “#else”
o “#elif” — else if

Guarding Example

#1fndef CIRCLEUTIL_H

#define CIRCLEUTIL_H

/* circleUtils.h */

/* include .h files as necessary */

/* supporting typedefs and #defines */
typedef double Radius;

/* function prototypes */

// given the radius, returns the area of a circle
double Area(Radius radius);

// given the radius, calcs the circumference of a circle
double Circumference(Radius radius);
#endif

Separate Compilation

If code is separated into multiple .c files

= Must compile each .c file

= Combine resulting .o files to create executable
Files may be compiled separately and then
linked together

= -c flag tells gee to “compile only”

= Creates .0 files

Separate Compilation Example

gcc -¢ -Wall circleUtils.c //creates .o file
gcc -¢ -Wall sample.c / /creates .o file
gcc -Wall -o sample sample.o circleutils.o

- OR if only a few files, compiling and linking can
be done in one step
= gee -Wall -o sample sample.c circleUtils.c

Program Organization

main is generally defined in own .c file

= Calls helper functions

Program-specific helper functions in another .c file
= E.g. example1Utils.c

= If there are very few helpers, they can be in the same
file as main

Reusable functions in own .c file
= Group related functions in same file

Prototypes, typedets, #defines, for reusable function
in .h file

Scope/Lifetime

Variable “scope” refers to part of the program
that may access the variable

= Local, global, etc...

Variable “lifetime” refers to time in which a
variable occupies memory

Both determined by how and where variable is
defined

Global Variables

Global (external) variables are defined outside of
any function, typically near the top of .c file

= May be used anywhere in the .c file in which they are
defined

= Exist for the duration of your program

= May be used by any other .c file in your application
that declares them as “extern” unless also defined as
static

Static global variables may only be used in .c file that

declares them

= “extern” declarations for global variables should be
placed into a header file

Local Variables

Defined within opening and closing braces of
function, control-structure, etc...

= Are usable only within the block in which they are
defined

= Exist only during the execution of the block unless also
defined as static

o Initialized variables are reinitialized each time the
block is executed if not defined as static

Static local variables retain their values for the
duration of the program

» Usually used in functions to retain values between
calls to function

Function parameters are local to the function

Static Variables

- Static variables are initialized to zero upon
memory allocation

= Good style to explicitly code it to make clear-zero
initialization was intended

= May initialize to other constants
= Exception — pointers variables initialize to NULL

Static Example

int trackTillTen(){
staticint1 = 1;
if (1>10) return(1);
1++;
return(o);

b
int main(){

int1 = 0;

while(i==0) i=trackTillTen();
h

Function Scope

All functions are external
= C does not allow nesting of function definitions
= No “extern” declaration is needed

= All functions may be called from any .c file in your
program UNLESS they are also declared as static

Static functions may only be used within .c file in
which they are defined

Exception: GNU C will allow nested helper functions
inside other functions only usable inside that
function. Not part of C standard — not portable

Recursion

C functions may be called recursively

= Typically called by itself

A properly written recursive function has the
following properties

= A “base case” — a condition which does NOT make a
recursive call because a simple solution exists

= A recursive call with a condition (usually a parameter
value) that is CLOSER to the base case than the
current condition

Each invocation of the function gets its own set of

arguments and local variables

Recursion Example

/* print an integer in decimal
** K & R page 87 (may fail on largest negative int) */
#1nclude <stdio.h>
void printd(int n){
if(n<o){
printf(“-”);
n = -n;
}
if(n/10) /*(n /10 !=0) --more than 1 digit */
printd(n / 10); /* recursive call: n has 1 less digit */
printf(“%c”, n % 10 + ‘0’); /* base case ---1 digit */

b

Inline Functions

C99 Only
Short functions may be defined as “inline”
= Suggestion to compiler that calls to the function
should be replaced by body of the function
-+ Suggestion, not a requirement
Inline functions provide code the structure and
readability advantages of using functions without
overhead of actual function calls
= 1.e. inline bool isEven(int n);

Generally, inline is more important in embedded
environments than in other environments

Macros

C provides macros as an alternative to small
functions

s More common prior to C99 (inline functions)
Handled by preprocessor

Inline functions are usually better

= Some situations macros don’t handle well
Macro format

= #define NAME(params (if any)) code here
- Note: no space b/w name and left paren

Macro Example

#define SQUARE(x) (x*x)

Like all #defines, the preprocessor performs text
substitution. Each occurrence of the parameter
is replaced by argument text

s int y=5; int z=SQUAREC(y);

NEVER FORGET THE ()

» #define DOUBLE_ IT(x) x+Xx

= Will inevitably be called with

» X =DOUBLE_ IT(x)*3

- Becomes x = X+x*3

