
C Basics
Introduction to the C
Programming Language

Review

• Assembler Examples

▫ AVR Registers

▫ AVR IO

▫ AVR Addressing Modes

▫ Processor Review

▫ State Machine examples

C History

• Began at Bell labs between 1969 and 1973

• Strong ties to the development of the UNIX
operating system

▫ C was developed to take advantage of byte-
addressability where B could not

• First published in 1978

▫ Called K&R C

 Maximum early portability

 A psuedo “standard” before C was standardized

The C Standard

• First standardized in 1989 by American National
Standards Institute (ANSI)
▫ Usually referred to C89 or ANSI C

• Slightly modified in 1990
▫ Usually C89 and C90 refer to essentially the same

language

• ANSI adopted the ISO.IEC 1999 standard in 2000
▫ Referred to as C99

• C standards committee adopted C11 in 2011
▫ Referred to as C11, and is the current standard
▫ Many still developed for C99 for compatability

What is C?

• Language that “bridges” concepts from high-level
programming languages and hardware
▫ Assembly = low level
▫ Python = Very high level
 Abstracts hardware almost completely

• C maintains control over much of the processor
▫ Can suggest which variables are stored in registers
▫ Don’t have to consider every clock cycle

• C can be dangerous
▫ Type system error checks only at compile-time
▫ No garbage collector for memory management
 Programmer must manage heap memory manually

C Resources

• http://cslibrary.stanford.edu/101/EssentialC.pdf

• http://publications.gbdirect.co.uk/c_book/

• MIT Open Courseware

▫ http://ocw.mit.edu/courses/#electrical-engineering-and-
computer-science

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://publications.gbdirect.co.uk/c_book/

C vs. Java

• C is a procedural language
▫ Centers on defining functions that perform single

service
 e.g. getValidInt(), search(), inputPersonData()

▫ Data is global or passed to functions as parameters
▫ No classes

• Java and C++ are Object Oriented Programming
languages
▫ Centers on defining classes that model “things”
 e.g. Sphere, Ball, Marble, Person, Student, etc…

 Classes encapsulate data (instance variables) and code
(methods)

Hardware to Application Onion Model

Ma Hardware

Machine Language

Assembler

High Level Language (C)

Higher Level Language(Python)

Applications

Libraries

• Library is composed of predefined functions

▫ As opposed to classes for OOP language

▫ Examples include:

 Char/String operations (strcpy, strcmp)

 Math functions (floor, ceil, sin)

 Input/Output Functions (printf, scanf)

• C/Unix manual – “man” command

▫ Description of C library functions and unix
commands

 e.g. “man printf” or “man dir”

Hello World

/*
file header block comment
*/
#include <stdio.h>
int main()
{
 // print the greeting (// allowed with C99)
 printf(“Hello World\n”);
 return 0;
}

Compiling on Unix

• Traditionally the name of the C compiler that
comes with Unix is “cc”

▫ UMBC GL systems use the “GNU Compiler
Collection”

 “gcc” to compile C (and C++ programs)

▫ Default name of executable program created by
gcc is a.out

 Can specify executable using -o command

Compiler Options

• -c
▫ Compile only, don’t link
 Create a .o file, but no executable

▫ E.g. gcc –c hello.c

• -o fname
▫ Name the executable filename instead of a.out
▫ E.g. gcc –o hello hello.c

• -Wall
▫ Report all warnings

• -ansi
▫ Enforce ANSI C standard, disable C99 features

Compilation Flow

Pre-
processor

Compiler Assembler Linker
Hello.c Hello.i Hello.s Hello.o Hello

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
program
(binary)

Executable
object
program
(binary)

Platform
Independent

Platform
Dependent

Libraries

Program and
variable
addresses not set
yet

Program is executed by calling name of executable at Unix prompt:
E.g. unix>hello

Compiler Vocabulary

• Preprocessor
▫ Prepares file for compiler, handles processing macros, source selection,

preprocessor directives, and file includes
• Compiler

▫ Converts (nearly) machine independent C code to machine dependent
assembly code

• Assembler
▫ Converts assembly language to machine language of an object

relocatable file (addresses not all resolved)
• Linker

▫ Combines all object files and resolves addressing issues
• Loader

▫ When executed, loads executable into memory
• Cross compiler

▫ Compiler that runs on one platform but outputs code for another target
machine (e.g. AVR is compiled on Intel)

Identifiers

• Identifier – name of a function or variable
• ANSI/ISO C standard

▫ CASE SENSITIVE
▫ First character must be alpha or _
▫ May NOT be a C keyword such as int, return, etc…
▫ No length limit imposed by standard
 May have compiler limitation

• Good coding practices
▫ Choose convention for capitalization of variables and

functions
▫ Symbolic constants should be all caps
▫ Choose descriptive names over short names

Choosing Identifiers example

• T1, Temp1, Temperature1

• Which of the three above is most useful?

• Treat identifiers as documentation

▫ Something which you would understand 3 years
later

▫ Don’t be lazy with naming, put effort into
documentation

Declaring, Defining, Initialization

• C allows you to declare and define variables

• A declaration puts the variables name in the
namespace

▫ No memory is allocated

▫ Sets identifier (name) and type

• A definition allocates memory

▫ Amount depends on variable type

• An initialization (optional) sets initial value to be
stored in variable

C Declaration Example

• In C, combined declaration and definition is typical
char example1; //definition and declaration
int example2 = 5; //def. decl. and init.
void example3(void){ //def. and decl. of a function
 int x = 7;
}

• The “extern” keyword may be added to declare that
definition will be provided elsewhere
extern char example1;
extern int example2;
void example3(void);

A function which does not provide
definition is sufficient for the
compiler.
This declaration is called a prototype

Assignments

• Assignments set values to variables

• Uses equal “=“ character and end with semicolon

▫ E.g. temperature1 = 3;

▫ temperature2 = temperature1;

Initialization

• Refers to the first assignment whether in declaration
or afterward

• Until initialization, variables are considered
uninitialized
▫ Contents are unknown/unspecified/garbage
▫ Exception: All objects with static storage duration

(variables declared with static keyword and global
variables) are zero initialized unless they have user-
supplied initialization value
 Still good practice to provide explicit initialization

• Initialization is not “free” in terms of run time or
program space
▫ Equivalent to a LDI

Types

• Intrinsic (fundamental, built-in) types
▫ Integral types
 E.g. int, char, long

▫ Floating-Point types
 E.g. float, double

• Type synonyms (aliases) using “Typedef”
▫ Keyword “typedef” can be used to give new name to

existing type
▫ Example:

 typedef unsigned int my_type;
 my_type a=1;

▫ Useful for Structures (covered later)

Integral Data Types

• C data types for storing integers are:
▫ int (basic integer data type)
▫ short int (typically abbreviated as short)
▫ long int (typically abbreviated as long)
▫ long long int (C99)
▫ char (C does not have “byte”)
▫ int should be used unless there is a good reason to use

one of the others
• Number of bytes

▫ char is stored in 1 byte
▫ Number of bytes used by other types depends on

machine being used

Integral Type Sizes

• C standard is specifically vague regarding size

▫ A short must not be larger than an int

▫ An int must not be larger than a long int

▫ A short int must be at least 16 bits

▫ An int must be at least 16 bits

▫ A long int must be at least 32 bits

▫ A long long int must be at least 64 bits

• Check compiler documentation for specific
lengths

Integral Specifiers

• Each of the integral types may be specified as:

▫ Signed (positive, negative, or zero)

▫ Unsigned (positive or zero only) (allows larger
numbers)

• Signed is default qualifier

• Be sure to pay attention to signed vs. unsigned
representations when transferring data between
systems. Don’t assume.

Common Embedded User Types

• To avoid ambiguity of variable sizes on embedded
systems, named types that make size apparent
should be used

• WinAVR has predefined custom types:
 int8_t - signed char

 uint8_t - unsigned char
 int16_t - signed int
 uint16_t - unsigned int
 int32_t - signed long
 uint32_t - unsigned long
• These are defined in inttypes.h using typedef

command

Floating Point Types

• C data types for storing floating point values are

▫ float – smallest floating point type

▫ Double – larger type with larger range of values

▫ long double – even larger type

• Double is typically used for all floating point
values unless compelling need to use one of the
others

• Floating point values may store integer values

Floating Point Type

• C standard is again unspecific on relative sizes

▫ Requires float < double < long double

• Valid floating point declarations:

tloat avg = 10.6;

double median = 88.54;

double homeCost = 10000;

Character Data Types

• C has just one data type for storing characters

▫ Char – just 1 byte

▫ Because only 1 byte, C only supports ASCII
character set

• Example assignments:

▫ char x = ‘A’;

 Equivalent to : char x = 65;

 ASCII character set recognizes ‘A’ as 65

Const qualifier

• Any of the variable types may be qualified as
const

• const variables may not be modified by your
code

▫ Any attempt to do so will result in compiler error

▫ Must be initialized when declared

 E.g. const double PI = 3.14159;

 const int myAge = 24;

 Const float PI; //valid, PI=0

 PI = 3.14159; //invalid

Sizeof()

• Because sizes of data types in C standard are
vaguely specified, C provides sizeof() operator to
determine size of any data type

• sizeof() should be used everywhere the size of a
data type is required

▫ Maintain portability between systems

Variable Declaration

• ANSI C requires all variables be declared at the
beginning of the “block” in which they are
defined

▫ Before any executable line of code

• C99 allows variables to be declared anywhere in
code

▫ Like java and C++

• Regardless, variables must be declared before
they can be used

Arithmetic Operators

• Arithmetic operators are the same as java

▫ = : assignment

▫ +,- : plus, minus

▫ *,/,% : multiply, divide, modulus

▫ ++, --: increment, decrement (pre and post)

• Combinations are the same

▫ +=, -= : Plus equal, minus equal

▫ *=, /=, %=: multiply equal, divide equal, mod
equal

Boolean Data Type

• ANSI has no Boolean type

• C99 standard supports boolean data type

• To use bool, true, and false you must include
stdbool.h

#include <stdbool.h>

Bool isRaining = false;

If(isRaining)

 printf(“Bring your umbrella\n”);

Logical Operators

• Logical Operators are closely similar in C and
python and result in boolean value
▫ &&: and
▫ || : or
▫ ==, !=: equal and not equal
▫ <, <=: less than, less than or equal
▫ >, >=: greater than, greater than or equal

• Integral types may also be treated as boolean
expressions
▫ 0 considered false
▫ Any non-zero is considered true

Control Structures

• Both languages support the following control
structures

▫ For loop

▫ While loop

▫ Do-while loop

▫ Switch statements

▫ If and if-else statements

▫ Braces ({,}) are used to begin and end blocks

Curly Braces

• Used to group multiple statements together
▫ Control blocks, functions
▫ Statements execute in order

int main(){
 int i=7;
 if(i==7) {
 i=i+j;
 int k; //forbidden by c89 standard (c99 okay)
 k=i*I; //variables declared at top of block
 }
}

If - Else block

if (expression) (statement)
e.g. if(x>3) x+=1; //simple form

if(expression) { //simple form with {} to group
statement;
statement;

}
if(expression){ //full if/else form
 statement;
} else {
 statement;
}

If - Else If – Else block

if(expression1) {

 statement 1;

} else if (expression2) {

 statement2;

} else {

 statement3;

}

Spacing Variation (Be Consistent)

if(expression) {

 statement;

}else {

 statement;

}

if (expression)

{

 statement;

}

else {

 statement;

}

if (expression)

{

 statement;

}

else

{

 statement;

}

There are many spacing styles for logic blocks. Pick one and be consistent.

Switch
switch (expression) {
 case const-expression-1:
 statement;
 break;
 case const-expression-2:
 statement;
 break;
 case <const-expression-3>: //combined case 3 and 4
 case <const-expression-4>:
 statement;
 break;
 case <const-expression-5>: //no break mistake? maybe
 statement;
 case <const-expression-6>:
 statement;
 break;
 default: // optional
 statement;
}

Omitting the break
statements is a common
error --it
compiles, but leads to
inadvertent fall-through
behavior. This behavior
is just like the assembly
jump tables it
implements.

While – Do While

while(expression){ //executes 0 or more times

 statement;

}

do{ //executes 1 or more times

 statement;

} while(expression)

For loops

for(initialization; continuation; action){
 statement;
}
for(; continuation; action){
 statement;
}

• Initialization, continuation and action are all optional.
• May optionally declare a variable in initialization (C99

standard)
• Continuation condition must be satisfied for every

execution of statement, including the first iteration
• Action is code performed after the statement is executed

For loops

int i = 99;

for(; i!=0;){

 statement;

 i-=1;

}

for (int i = 99; i!=0; i=i-1){

 statement;

}

These are equivalent statements.

The second one is much more
readable.

The second one also uses the C99
variable declaration inside the for
loop. This may not work on AVR.

Break

while(expression){

 statement;

 statement;

 if(condition)

 break;

 statement;

 statement;

}

//control jumps here on break.

Continue

while(expression){

 statement;

 if(condition)

 continue;

 statement;

 statement;

 //control jumps here on continue

}

Conditional Expression

• Also called the Ternary Operatory

• ?: (tri-nary “hook colon”)

▫ C: int larger=(x>y ? x:y);

▫ Python: larger=x if x>y else y

• Syntax: expression1 ? expression2:expression3

▫ Use this sparingly since it makes code less
readable

Other Operators

• These operators are very similar in C and Java

• <<,>>,&,|,^ : bit operators

• <<=,>>=,&=,|=,^= : bit equal operators

• [] : brackets (for arrays)

• () : parenthesis for functions and type casting

• ^ - binary XOR

Arrays

• C supports arrays as basic data structure

• Indexing starts with 0

• ANSI C requires size of array be a constant

• Declaring and initializing arrays:

 int grades[30];

 int areas[10] = {1,2,3};

 long widths[12] = {0};

 int IQs[] = {120, 121, 99, 154};

Variable Size Arrays

• C99 allows size of array to be a variable

int numStudents = 30;

int grades[numStudents];

Multi-Dimensional Arrays

• C supports multi-dimensional array

• Subscripting provided for each dimension

• For 2-d arrays:

▫ First dimension is number of “rows”

▫ Second is number of “columns” in each row

int board[4][5]; // 4 rows, 5 columns

int x = board[0][0]; //1st row, 1st column

int y = board[3][4];//4th (last) row, 5th (last) column

#defines

• The #define directive can be used to give names to
important constants

▫ Makes your code more readable and changeable

• The compiler’s preprocessor replaces all instances of
the #define name with the text it represents

• Note, no terminating semi-colon

#define PI 3.14159

…

 double area = PI * radius * radius;

#define vs. const

• #define

▫ Pro – no memory is used for the constant

▫ Con – cannot be seen when code is compiled

 Removed by pre-compiler

▫ Con – not real variables, have no type

• const variables

▫ Pro – real variables with a type

▫ Pro – Can be examined by debugger

▫ Con – take up memory

Examples

const int NUMBER = -42;

int main(){

 int x = -NUMBER;

}

#define NUMBER 5+2

int x = 3 * NUMBER;

#define NUMBER 5+2;

int x = NUMBER * 3;

If replaced with a # define,
will throw compiler error

(-- is a decrement operator)

Value of x is 17 with #define, 21
with const

(int x = 3 * 5 + 2) vs (int x = 3 * 7)

Compiler error

int x = 5 + 2; * 3;

Enumeration Constants

• C provides the enum as a list of named constant
integer values (starting at 0 by default)

• Behaves like integers
• Names in enum must be distinct
• Often better alternative to #defines
• Example

▫ Enum months{ JAN=1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

▫ Enum months thisMonth;
▫ thisMonth=SEP; //ok
▫ thisMonth=42; //unfortunately, also ok

C Functions

• C Functions (no explicit procedures)
▫ Have a name
▫ Have a return type (a void return type represents a

procedure)
▫ May have parameters

• Before a function may be called, its “prototype” must
be known to the compiler
▫ Verify that function is being called correctly
▫ Accomplished by:
 Providing entire function prior to calling function in code
 Provide function prototype prior to calling in code and

providing function elsewhere

C Functions

• Unlike Java, a function is C is uniquely identified
by its name

▫ No concept of method overloading

▫ There can only be one main() function in a C
application

• UMBC coding standards dictate function names
begin with UPPERCASE letter

▫ E.g. AddThreeNumbers() instead of
addThreeNumbers

Simple C Program
#include <stdio.h>
typedef double Radius;
#define PI 3.1415
/* given the radius, calculates the area of a circle */
double CircleArea(Radius radius){
 return (PI * radius * radius);
}
// given the radius, calculates the circumference of a circle
double Circumference(Radius radius){
 return (2 * PI * radius);
}
int main(){
 Radius radius = 4.5;
 double area = circleArea(radius);
 double circumference = Circumference(radius); // print the results
 return 0;
}

Simple C Program (prototypes)
#include <stdio.h>
typedef double Radius;
#define PI 3.1415
/* function prototypes */
double CircleArea(Radius radius);
double Circumference(Radius radius);
int main(){
 Radius radius = 4.5;
 double area = circleArea(radius);
 double circumference = Circumference(radius); // print the results
 return 0;
}
/* given the radius, calculates the area of a circle */
double CircleArea(Radius radius){
 return (PI * radius * radius);
}
// given the radius, calcs the circumference of a circle
double Circumference(Radius radius){
 return (2 * PI * radius);
}

Typical C Program

Includes

Defines, typedefs, data type
definitions, global variable

declarations, function prototypes

Main

Funciton Definitions

