
Arrays
Arrays, Argument Passing,
Promotion, Demotion

Review

• Introduction to C
▫ C History
▫ Compiling C
▫ Identifiers
▫ Variables
 Declaration, Definition, Initialization
 Variable Types

▫ Logical Operators
▫ Control Structures
 i.e. loops

• Functions and Macros
• Separate Compilation

Arrays in C

• Array - a collective name given to a group of
similar quantities

▫ All integers, floats, chars, etc…

▫ Array of chars is called a “string”

• C Array – A block of memory locations that can
be accessed using the same variable name

▫ Same data type

Declaration of Arrays

• Arrays must be declared before they may be used

▫ type variable_name[length];

 Type – the variable type of the element to be stored
in the array

 Variable_name – Any name of the variable to be
addressed

 Length – computer will reserve a contiguous block of
memory space according to length of array in
memory

*program considers the block contiguous, though the architecture may place the array in
multiple pages of memory*

Examples

• double height[10];

▫ Type: double

▫ Variable name: height

▫ Length: 1o

• float width[20];

• int c[9];

• char name[20];

▫ Would be referred to as a string

Array Implementation in C

• Array identifier alone is a variable storing the
address of the first element of the array

▫ Typically dereferenced with offset to access
various elements of the array for reading or
modification

• First element of array is stored at position 0,
second at position 1, nth at (n-1)th position

▫ Accessing variable – a[n] = (n+1)th element

Initialization

• Arrays should be initialized to some value

▫ Uninitialized arrays are still able to be accessed -
can access garbage memory contents

• Example

▫ int a[] = {10,20,30,40};

▫ int a[5]={1,2,3};

 If array size > numbers initialized, all others
initialized to zero

▫ int a[5] = {0};

 Shorthand for initializing all elements to 0

Accessing Array Elements

• Accessed with a dereference and offset using the
[] operator

▫ After dereferenced, treated like normal variables

 Can be read and modified like a normal variable

• Valid array access examples:

▫ c[0] = 3;

▫ c[3] += 5;

▫ y = c[x+1] ;

Char Array

• Character arrays can be initialized using “string
literals”
▫ String literals are specified with double quotes and are

an array of constant characters and are terminated by
null character

▫ A null character terminates c-style strings
 ‘\0’ – null character

• Equivalent char arrays example:
▫ Char string1[] = “first”;
▫ Char string1[] = {‘f’, ‘i’, ‘r’, ‘s’, ‘t’, ‘\0’};

• Can access individual characters
▫ string1[3] == ‘s’

scanf()

• Function for taking input from stdin

• Format: scanf(“%s”, string1);

• Function

▫ Reads characters from stdin until whitespace
encountered

 Can write beyond end of array

More Char Array

• char string[5] = “hello”

▫ Error: 6 characters in string literal due to null
character

• Char string[10] = “hello”

▫ Equivalent to “hello\0\0\0\0\0”

• Note: string=“hello” will give a syntax error

Example Program

#include <stdio.h>
int main(){

char string1[20], string2[]=“string”;
int I;
printf(“Enter a string: ”);
scanf(“%s”, string1);
printf(“string1 is: %s\nstring2 is: %s\n”,string1,

string2);
for(i=0;string1[i]!=‘\0’;i++)

printf(“%c”,string1[i]);
printf(“\n”);
return 0;

}

Printing strings
using printf

Getting input
using scanf

Printing by
iterating through
char array

Multidimensional Arrays

• Multidimensional Array initialization:

▫ Unspecified elements in given row – initialized to
0

▫ Rows not given – initialized to 0

• Ex

▫ int a[3][2] = {{1},{3,4}};

▫ Result shown on right 

Passing Arrays to Functions

• To pass an array argument to a function specify
the name of the array without any brackets

▫ myFunction(myArrayName);

• Arrays are treated as “pass by reference”

▫ The memory address for the array is copied and
passed by value

• Name of array is the address of the first element

▫ Knows where the array is stored in memory

• Modifies original memory locations

Passing Array Elements

• Array elements are passed by value

▫ Original memory location is not modified

▫ Ex. myFunction(myArray[3]);

 myArray is not modified by this function

Protecting Array Elements

• const modifier will help protect contents of
constant-elements by generating compiler
messages

▫ Example message

 warning: passing argument 1 of ‘myFunction’
discards qualifiers from pointer target type

 note: expected ‘char *’ but argument is of type ‘const
char *’

▫ Message is generated regardless of whether array
is modified

Function with Const Array

• int AccessElement(const int a[], int index);

▫ Coding rule: always provide const modifier in
parameter types where appropriate even though it
is optional

 Prevents creating bugs

• This function would not generate a warning
when called

▫ Does generate an error if attempt to modify the
array

Implicit Type Casting

• float f1 = 0; f2 = 1;

• int i1 = 0; i2 = 2;

• char c1 = 1; c2 = 2;

• f1 = i1/i2;

▫ Int by int division, the result is cast to become a
float so F0 becomes 0.0;

Explicit Type Casting

• To avoid implicit type casting compiler warnings
and errors use unary cast operator

▫ Unary cast operator - (type)

• Example:

▫ F1 = (float)i1/(float)i2;

Demotion

• Shortening integral types
▫ i.e. assigning int to char, long to int, etc…
 Bit truncation occurs, or undefined if value cannot be

stored in lower rank type

• Float to int casting attempts to truncate (remove)
fractional part
▫ NOT ROUNDING
▫ E.g. int i = 1.5;  sets i to 1, even if i = 1.99;

• Unsigned to signed casting is particularly dangerous
▫ E.g. unsigned int j = -1; //gives a very large positive

number

Implicit Type Casting Functions

int mult(int a, int b){
Return (a*b);

}

/* somewhere in main*/
float f0,f1,f2;
f0 = mult(f1, f2);

Parameter passing is like assignments, implicit casting
can occur and will cause warnings

f0 = (float)mult((int)f1 , (int)f2);
Better to use implicit type casting

