Arrays

Arrays, Argument Passing,
Promotion, Demotion




Review

- Introduction to C

s C History
Compiling C
Identifiers
Variables
+ Declaration, Definition, Initialization
» Variable Types
Logical Operators
Control Structures
- i.e. loops
- Functions and Macros
- Separate Compilation

O

a

O

O

O



Arrays in C

Array - a collective name given to a group of
similar quantities

= All integers, floats, chars, etc...

= Array of chars is called a “string”

C Array — A block of memory locations that can
be accessed using the same variable name
= Same data type



Declaration of Arrays

- Arrays must be declared before they may be used

s type variable_name[length];

Type — the variable type of the element to be stored
in the array

- Variable_name — Any name of the variable to be
addressed

» Length — computer will reserve a contiguous block of
memory space according to length of array in
memory

*program considers the block contiguous, though the architecture may place the array in
multiple pages of memory*



Examples

double height[10];

= Type: double
= Variable name: height
= Length: 10

float width[20];

int c[9];
char name[20];
= Would be referred to as a string



Array Implementation in C

Array identifier alone is a variable storing the
address of the first element of the array

= Typically dereferenced with offset to access
various elements of the array for reading or
modification

First element of array is stored at position o,

second at position 1, nth at (n-1)th position

= Accessing variable — a[n] = (n+1)th element



Initialization

- Arrays should be initialized to some value

= Uninitialized arrays are still able to be accessed -
can access garbage memory contents

- Example
= int a[] = {10,20,30,40};
> int a[5]={1,2,3};
- If array size > numbers initialized, all others
initialized to zero

> inta[5] = {0};
- Shorthand for initializing all elements to o




Accessing Array Elements

Accessed with a dereference and offset using the

| ] operator

= After dereferenced, treated like normal variables
 Can be read and modified like a normal variable

Valid array access examples:

= c[o] = 3;

= c[3] += 5;

sy = c¢[x+1] ;




Char Array

Character arrays can be initialized using “string
literals”

= String literals are specified with double quotes and are
an array of constant characters and are terminated by
null character

= A null character terminates c-style strings
+ \0’ — null character

Equivalent char arrays example:

= Char stringi1[] = “first”;

= Char string1[] = {f’, 1, T, ’s’, t’, \0’};

Can access individual characters

= string1[3] == S’



scanf()

Function for taking input from stdin
Format: scanf(“%s”, string1);

Function

= Reads characters from stdin until whitespace
encountered
» Can write beyond end of array



More Char Array

char string[5] = “hello”

= Error: 6 characters in string literal due to null
character

Char string[10] = “hello”
» Equivalent to “hello\o\o\0\0\0”

Note: string="hello” will give a syntax error



Example Program

#1nclude <stdio.h>
int main(){
char string1[20], string2[ |=“string”;
int I;
printf(“Enter a string: *); Getting input

scanf(“%s”, string1); < usingscanf

e e : Cos
printf(“string1 is: %s\nstring2 is: %s\n ,stm& Printing strings

string2); : .

. . N using printf

for(i=0;string1[i]!="\0";i++) Prinﬁﬁg by
Printf(“%c”,stringl[i]); < iterating through

printf(“\n”); char array

return oO;



Multidimensional Arrays

- Multidimensional Array initialization:

= Unspecified elements in given row — initialized to
0

= Rows not given — initialized to o0

: RO
= int a[3][2] = {{1},{3,4}}; —
= Result shown on right > 1

2 o 0



Passing Arrays to Functions

To pass an array argument to a function specify
the name of the array without any brackets

s myFunction(myArrayName);

Arrays are treated as “pass by reference”

» The memory address for the array is copied and
passed by value

Name of array is the address of the first element
= Knows where the array is stored in memory
Modifies original memory locations



Passing Array Elements

- Array elements are passed by value
= Original memory location is not modified

= Ex. myFunction(myArray[3]);
- myArray is not modified by this function



Protecting Array Elements

- const modifier will help protect contents of
constant-elements by generating compiler
Imessages
= Example message

-+ warning: passing argument 1 of ‘myFunction’
discards qualifiers from pointer target type
- note: expected ‘char *’ but argument is of type ‘const
char *
= Message is generated regardless of whether array
is modified



Function with Const Array

int AccessElement(const int a[ ], int index);

= Coding rule: always provide const modifier in
parameter types where appropriate even though it
is optional
- Prevents creating bugs

This function would not generate a warning

when called

= Does generate an error if attempt to modify the
array



Implicit Type Casting

float f1 = 0; f2 = 1;
int 11 = 0; 12 = 2;
charci =1;c2 = 2;

f1=11/i2;
= Int by int division, the result is cast to become a
float so Fo becomes 0.0;



Explicit Type Casting

To avoid implicit type casting compiler warnings
and errors use unary cast operator
= Unary cast operator - (type)

Example:
» F1 = (float)i1/(float)i2;



Demotion

Shortening integral types

= 1.e. assigning int to char, long to int, etc...

- Bit truncation occurs, or undefined if value cannot be
stored in lower rank type

Float to int casting attempts to truncate (remove)

fractional part

s NOT ROUNDING

» E.g.inti=1.5; 2 setsito 1, evenifi = 1.99;

Unsigned to signed casting is particularly dangerous

= E.g. unsigned int j = -1; //gives a very large positive
number



Implicit Type Casting Functions

int mult(int a, int b){
Return (a*b);

b

/* somewhere in main*/
float fo,f1,f2;
fo = mult(f1, f2);
Parameter passing is like assignments, implicit casting
can occur and will cause warnings

fo = (float)mult( (int)f1, (int)f2 );
Better to use implicit type casting



