
Advanced Pointers
C Structures, Unions, Example
Code

Review

• Introduction to C

• Functions and Macros

• Separate Compilation

• Arrays

• Strings

• Pointers

• Structs and Unions

Reminder

• You can’t use a pointer until it points to
something

▫ Default value is null

• Therefore, the following will give segmentation
fault

▫ char * name;

▫ strcpy(name,”bobby”);

▫ scanf(“%s”,name);

▫ printf(“%s\n”,name);

Pointers to Pointers

• Because a pointer is a variable type a pointer
may point to another pointer

• Consider the following

▫ int age=42;

▫ int *pAge=&age;

▫ int **ppAge=&pAge;

• ppAge is a pointer variable type, but it points to
the memory location of pAge, another pointer

Pointer to Pointer Example

int main ()
{
 /* a double, a pointer to double,
 ** and a pointer to a pointer to a double */
 double gpa = 3.25, *pGpa, **ppGpa;
 /* make pgpa point to the gpa */
 pGpa = &gpa;
 /* make ppGpa point to pGpa (which points to gpa) */
 ppGpa = &pGpa;
 // what is the output from this printf statement?
 printf("%0.2f, %0.2f, %0.2f", gpa, *pGpa, **ppGpa);
 return 0;
}
Output = 3.25, 3.25, 3.25

Pointers to Struct
/* define a struct for related student data */
typedef struct student {
 char name[50];
 char major [20];
 double gpa;
} STUDENT_t;
STUDENT_t bob = {"Bob Smith", "Math", 3.77};
STUDENT_t sally = {"Sally", "CSEE", 4.0};
STUDENT_t *pStudent; /* pStudent is a "pointer to struct student" */
/* make pStudent point to bob */
pStudent = &bob;
/* use -> to access the members */
printf ("Bob's name: %s\n", pStudent->name); // a->b is shorthand for (*a).b
printf ("Bob's gpa : %f\n", pStudent->gpa);
/* make pStudent point to sally */
pStudent = &sally;
printf ("Sally's name: %s\n", pStudent->name);
printf ("Sally's gpa: %f\n", pStudent->gpa);

Pointer in a Struct

• Data member of a struct can be any data type, including pointers
• Ex. Person has a pointer to struct name

#define FNSIZE 50
#define LNSIZE 40
typedef struct name
{
 char first[FNSIZE + 1];
 char last [LNSIZE + 1];
} NAME_t;
typedef struct person
{
 NAME_t *pName; // pointer to NAME struct
 int age;
 double gpa;
} PERSON_t;

Pointer in a Struct

• Given the declarations below, how do we access
Bob’s name, last name, and first name?

▫ NAME_t bobsName = {“Bob”,”Smith”};

▫ PERSON_t bob;

▫ bob.age = 42;

▫ bob.gpa = 3.4

▫ bob.pName = &bobsName;

Self-Referencing Structs

• Powerful data structures can be created when a data member
of a struct is a pointer to a struct of the same type
typedef struct player
{
 char name[20];
 struct player *teammate; /* can’t use TEAMMATE yet */
} TEAMMATE;
TEAMMATE *team, bob, harry, john;
team = &bob; /* first player */
strncpy(bob.name, “bob”, 20);
bob.teammate = &harry; /* next teammate */
strncpy(harry.name, “harry”, 20);
harry.teammate = &john; /* next teammate */
strncpy(john.name, “bill”, 20);
john.teammate = NULL: /* last teammate */

Self-Referencing Structs

• Typical code to print a (linked) list
▫ Follow the teammate pointers until NULL is

encountered

// start with first player
TEAMMATE *t = team; // t is now equal to &bob
// while there are more players...
while (t != NULL) {
 printf(“%s\n”, t->name); // (*t).name
 // next player
 t = t->teammate; //t=(*t).teammate;
}

Dynamic Memory

• C allows us to allocate memory in which to store
data during program execution

• Dynamic memory has two primary applications:

▫ Dynamically allocating an array

 Based on some user input or file data

 Better than guessing and defining the array size in
our code since it can’t be changed

▫ Dynamically allocating structs to hold data in
some arrangement (a data stucture)

 Allows an “infinite” amount of data to be stored

Dynamic Memory Functions

• Part of the standard C library (stdlib.h)
▫ void *malloc(size_t nrBytes);

 Returns pointer to (uninitialized) dynamically allocated memory of size
nrBytes, or NULL if request cannot be satisfied

▫ void *calloc(int nrElements, size_t nrBytes);
 Same as malloc() but memory is initialized to 0
 Parameter list is different

▫ void *realloc(void*p, size_t nrBytes);
 Changes the size of the memory pointed to by p to nrBytes. The contents

will be unchanged up to minimum of old and new size
 If new size is larger, new space is uninitialized
 Copies data to new location if necessary
 If successful, pointer to new memory location is provided or NULL if

cannot be satisfied
▫ void free(void *p)

 Deallocates memory pointed to by p which must point to memory
previously allocated by calling by calling one of the above functions

void* and size_t

• The void* type is C’s generic pointer. It may point to
any kind of variable, but may not be dereferenced
▫ Any other pointer type may be converted to void* and

back again without any loss of information
▫ Void* is often used as parameter types to, and return

types from, library functions

• size_t is an unsigned integral type that should be
used(rather than int) when expressing “the size of
something”
▫ E.g. an int, array, string, or struct
▫ Often used as parameter for library functions

malloc() for arrays

• malloc() returns a void pointer to uninitialized memory
• Good programming practice is to cast the void* to the

appropriate pointer type
• Note the use of sizeof() for portable coding
• As we’ve seen, the pointer can be used as an array name

int *p = (int*)malloc(42*sizeof(int));

for(k=0;k<42;k++)

 p[k] = k;

for(k=0;k<42;k++)

 printf(“%d\n”,p[k]);

• p may be rewritten as a pointer rather than an array
name

calloc() for arrays

• calloc() returns a void pointer to memory that is
initialized to zero

• Note that the parameters to calloc() are different
than the parameters for malloc()

▫ int * p = (int*)calloc(42,sizeof(int));

▫ for(k=0;k<42;k++);

▫ printf(“%d\n”,p[k]);

• Try rewriting this code using p as a pointer
rather than array name

realloc()

• realloc() changes the size of a dynamically allocated
memory previously created by malloc() or calloc(),
returns a void pointer to the new memory
int *p = (int *)malloc(42 * sizeof(int));
for (k = 0; k < 42; k++)
p[k] = k;
p = (int *)realloc(p, 99 * sizeof(int));
for (k = 0; k < 42; k++)
 printf(“p[%d] = %d\n”, k, p[k]);
for (k = 0; k < 99; k++)
 p[k] = k * 2;
for(k=0; k < 99; k++)
 printf(“p[%d] = %d\n”, k, p[k]);

Testing the returned pointer

• malloc(), calloc(), and realloc() all return NULL if
unable to fulfill the requested memory allocation

• Good programming practice(i.e. points for your
homework) dictates that the pointer returned should
be validated

char *cp = malloc(22 * sizeof(char));

if (cp == NULL) {

 fprintf(stderr, “malloc failed\n");

 exit(-12);

}

Assert()

• Since dynamic memory allocation shouldn’t fail
unless there is a serious programming mistake,
such failures are often fatal

• Rather than using ‘if’ statements to check the
return values from malloc() we can use the
assert() function

• To use assert():
▫ #include <assert.h>
▫ char *cp = malloc(22*sizeof(char));
▫ assert(cp!=NULL);

How assert() works

• The parameter to assert is any Boolean expression --assert(

expression);
▫ If the Boolean expression is true, nothing happens and execution

continues on the next line
• If the Boolean expression is false, a message is output to

stderr and your program terminates
▫ The message includes the name of the .c file and the line number

of the assert() that failed
• assert() may be disabled with the preprocessor directive

#define NDEBUG
• assert() may be used for any condition including

▫ Opening files
▫ Function parameter checking (preconditions)

free()

• free() is used to return dynamically allocated
memory back to the heap to be reused later by calls
to malloc(), calloc(), or realloc()

• The parameter to free() must be a pointer previously
returned by one of malloc(), calloc(), or realloc()

• Freeing a NULL pointer has no effect
• Failure to free memory is known as a “memory leak”

and may lead to program crash when no more heap
memory is available
int *p = (int *)calloc(42, sizeof(int));
/* code that uses p */
free(p);

Dynamic Memory for Structs

typedef struct person{
 char name[51];
 int age;
 double gpa;
} PERSON;
/* memory allocation */
PERSON *pbob = (PERSON *)malloc(sizeof(PERSON));
pbob->age = 42; //same as (*pbob).age = 42;
pbob->gpa = 3.5; //same as (*pbob).gpa = 3.5;
strcpy(pbob->name, “bob”); //same as strcpy((*pbob).name,

“bob”);
...
/* explicitly freeing the memory */
free(pbob);

Dynamic Memory for Structs

Java Comparison
public class Person
{
 String name;
 public int age;
 public double gpa;
}
// memory allocation
Person bob = new Person();
bob.age = 42;
bob.gpa = 3.5;
bob.name = “bob”
// bob is eventually freed
// by garbage collector

Dynamic Teammates

typedef struct player{
 char name[20];
 struct player *teammate;
} PLAYER;
PLAYER *getPlayer(){
 char *name = askUserForPlayerName();
 PLAYER *p = (PLAYER *)malloc(sizeof(PLAYER));
 strncpy(p->name, name, 20);
 p->teammate = NULL;
 return p;
}

Dynamic Teammates (2)

int main (){
 int nrPlayers, count = 0;
 PLAYER *pPlayer, *pTeam = NULL;
 nrPlayers = askUserForNumberOfPlayers();
 while (count < nrPlayers){
 pPlayer = getPlayer();
 pPlayer->teammate = pTeam;
 pTeam = pPlayer;
 ++count;
 }
 /* do other stuff with the PLAYERs */
 /* Exercise --write code to free ALL the PLAYERs */
 return 0;
}

Doubly-Linked Version
typedef struct player
{
 char name[20];
 struct player *nextteammate; /* can’t use TEAMMATE yet */
 struct player *prevteammate; /* can’t use TEAMMATE yet */
} TEAMMATE;
...
TEAMMATE *team, bob, harry, john;
team = &bob; /* first player */
strncpy(bob.name, “bob”, 20);
bob.nextteammate = &harry; /* next teammate */
bob.prevteammate = NULL; //or &john for circular
strncpy(harry.name, “harry”, 20);
harry.nextteammate = &john; /* next teammate */
harry.prevteammate = &bob;
strncpy(john.name, “john”, 20);
john.nextteammate = NULL; // &bob for circular linked list
john.prevteammate = &harry:

Dynamic Arrays

• As we noted, arrays cannot be returned from
functions

• However, pointers to dynamically allocated
arrays may be returned

char *getCharArray(int size){

 char *cp = (char *)malloc(size * sizeof(char));

 assert(cp != NULL);

 return cp;

}

Dynamic 2-D Arrays

• There are now three ways to define a 2-D array,
depending on just how dynamic you want them to be.
int board[8] [8];

• An 8 x 8 2-d array of int... Not dynamic at all
int *board[8];

• An array of 8 pointers to int. Each pointer represents a
row whose size is be dynamically allocated.

 int **board;
• A pointer to a pointer of ints. Both the number of rows

and the size of each row are dynamically allocated.

