
Advanced Pointers
C Structures, Unions, Example
Code

Review

• Introduction to C

• Functions and Macros

• Separate Compilation

• Arrays

• Strings

• Pointers

• Structs and Unions

Reminder

• You can’t use a pointer until it points to
something

▫ Default value is null

• Therefore, the following will give segmentation
fault

▫ char * name;

▫ strcpy(name,”bobby”);

▫ scanf(“%s”,name);

▫ printf(“%s\n”,name);

Pointers to Pointers

• Because a pointer is a variable type a pointer
may point to another pointer

• Consider the following

▫ int age=42;

▫ int *pAge=&age;

▫ int **ppAge=&pAge;

• ppAge is a pointer variable type, but it points to
the memory location of pAge, another pointer

Pointer to Pointer Example

int main ()
{
 /* a double, a pointer to double,
 ** and a pointer to a pointer to a double */
 double gpa = 3.25, *pGpa, **ppGpa;
 /* make pgpa point to the gpa */
 pGpa = &gpa;
 /* make ppGpa point to pGpa (which points to gpa) */
 ppGpa = &pGpa;
 // what is the output from this printf statement?
 printf("%0.2f, %0.2f, %0.2f", gpa, *pGpa, **ppGpa);
 return 0;
}
Output = 3.25, 3.25, 3.25

Pointers to Struct
/* define a struct for related student data */
typedef struct student {
 char name[50];
 char major [20];
 double gpa;
} STUDENT_t;
STUDENT_t bob = {"Bob Smith", "Math", 3.77};
STUDENT_t sally = {"Sally", "CSEE", 4.0};
STUDENT_t *pStudent; /* pStudent is a "pointer to struct student" */
/* make pStudent point to bob */
pStudent = &bob;
/* use -> to access the members */
printf ("Bob's name: %s\n", pStudent->name); // a->b is shorthand for (*a).b
printf ("Bob's gpa : %f\n", pStudent->gpa);
/* make pStudent point to sally */
pStudent = &sally;
printf ("Sally's name: %s\n", pStudent->name);
printf ("Sally's gpa: %f\n", pStudent->gpa);

Pointer in a Struct

• Data member of a struct can be any data type, including pointers
• Ex. Person has a pointer to struct name

#define FNSIZE 50
#define LNSIZE 40
typedef struct name
{
 char first[FNSIZE + 1];
 char last [LNSIZE + 1];
} NAME_t;
typedef struct person
{
 NAME_t *pName; // pointer to NAME struct
 int age;
 double gpa;
} PERSON_t;

Pointer in a Struct

• Given the declarations below, how do we access
Bob’s name, last name, and first name?

▫ NAME_t bobsName = {“Bob”,”Smith”};

▫ PERSON_t bob;

▫ bob.age = 42;

▫ bob.gpa = 3.4

▫ bob.pName = &bobsName;

Self-Referencing Structs

• Powerful data structures can be created when a data member
of a struct is a pointer to a struct of the same type
typedef struct player
{
 char name[20];
 struct player *teammate; /* can’t use TEAMMATE yet */
} TEAMMATE;
TEAMMATE *team, bob, harry, john;
team = &bob; /* first player */
strncpy(bob.name, “bob”, 20);
bob.teammate = &harry; /* next teammate */
strncpy(harry.name, “harry”, 20);
harry.teammate = &john; /* next teammate */
strncpy(john.name, “bill”, 20);
john.teammate = NULL: /* last teammate */

Self-Referencing Structs

• Typical code to print a (linked) list
▫ Follow the teammate pointers until NULL is

encountered

// start with first player
TEAMMATE *t = team; // t is now equal to &bob
// while there are more players...
while (t != NULL) {
 printf(“%s\n”, t->name); // (*t).name
 // next player
 t = t->teammate; //t=(*t).teammate;
}

Dynamic Memory

• C allows us to allocate memory in which to store
data during program execution

• Dynamic memory has two primary applications:

▫ Dynamically allocating an array

 Based on some user input or file data

 Better than guessing and defining the array size in
our code since it can’t be changed

▫ Dynamically allocating structs to hold data in
some arrangement (a data stucture)

 Allows an “infinite” amount of data to be stored

Dynamic Memory Functions

• Part of the standard C library (stdlib.h)
▫ void *malloc(size_t nrBytes);

 Returns pointer to (uninitialized) dynamically allocated memory of size
nrBytes, or NULL if request cannot be satisfied

▫ void *calloc(int nrElements, size_t nrBytes);
 Same as malloc() but memory is initialized to 0
 Parameter list is different

▫ void *realloc(void*p, size_t nrBytes);
 Changes the size of the memory pointed to by p to nrBytes. The contents

will be unchanged up to minimum of old and new size
 If new size is larger, new space is uninitialized
 Copies data to new location if necessary
 If successful, pointer to new memory location is provided or NULL if

cannot be satisfied
▫ void free(void *p)

 Deallocates memory pointed to by p which must point to memory
previously allocated by calling by calling one of the above functions

void* and size_t

• The void* type is C’s generic pointer. It may point to
any kind of variable, but may not be dereferenced
▫ Any other pointer type may be converted to void* and

back again without any loss of information
▫ Void* is often used as parameter types to, and return

types from, library functions

• size_t is an unsigned integral type that should be
used(rather than int) when expressing “the size of
something”
▫ E.g. an int, array, string, or struct
▫ Often used as parameter for library functions

malloc() for arrays

• malloc() returns a void pointer to uninitialized memory
• Good programming practice is to cast the void* to the

appropriate pointer type
• Note the use of sizeof() for portable coding
• As we’ve seen, the pointer can be used as an array name

int *p = (int*)malloc(42*sizeof(int));

for(k=0;k<42;k++)

 p[k] = k;

for(k=0;k<42;k++)

 printf(“%d\n”,p[k]);

• p may be rewritten as a pointer rather than an array
name

calloc() for arrays

• calloc() returns a void pointer to memory that is
initialized to zero

• Note that the parameters to calloc() are different
than the parameters for malloc()

▫ int * p = (int*)calloc(42,sizeof(int));

▫ for(k=0;k<42;k++);

▫ printf(“%d\n”,p[k]);

• Try rewriting this code using p as a pointer
rather than array name

realloc()

• realloc() changes the size of a dynamically allocated
memory previously created by malloc() or calloc(),
returns a void pointer to the new memory
int *p = (int *)malloc(42 * sizeof(int));
for (k = 0; k < 42; k++)
p[k] = k;
p = (int *)realloc(p, 99 * sizeof(int));
for (k = 0; k < 42; k++)
 printf(“p[%d] = %d\n”, k, p[k]);
for (k = 0; k < 99; k++)
 p[k] = k * 2;
for(k=0; k < 99; k++)
 printf(“p[%d] = %d\n”, k, p[k]);

Testing the returned pointer

• malloc(), calloc(), and realloc() all return NULL if
unable to fulfill the requested memory allocation

• Good programming practice(i.e. points for your
homework) dictates that the pointer returned should
be validated

char *cp = malloc(22 * sizeof(char));

if (cp == NULL) {

 fprintf(stderr, “malloc failed\n");

 exit(-12);

}

Assert()

• Since dynamic memory allocation shouldn’t fail
unless there is a serious programming mistake,
such failures are often fatal

• Rather than using ‘if’ statements to check the
return values from malloc() we can use the
assert() function

• To use assert():
▫ #include <assert.h>
▫ char *cp = malloc(22*sizeof(char));
▫ assert(cp!=NULL);

How assert() works

• The parameter to assert is any Boolean expression --assert(

expression);
▫ If the Boolean expression is true, nothing happens and execution

continues on the next line
• If the Boolean expression is false, a message is output to

stderr and your program terminates
▫ The message includes the name of the .c file and the line number

of the assert() that failed
• assert() may be disabled with the preprocessor directive

#define NDEBUG
• assert() may be used for any condition including

▫ Opening files
▫ Function parameter checking (preconditions)

free()

• free() is used to return dynamically allocated
memory back to the heap to be reused later by calls
to malloc(), calloc(), or realloc()

• The parameter to free() must be a pointer previously
returned by one of malloc(), calloc(), or realloc()

• Freeing a NULL pointer has no effect
• Failure to free memory is known as a “memory leak”

and may lead to program crash when no more heap
memory is available
int *p = (int *)calloc(42, sizeof(int));
/* code that uses p */
free(p);

Dynamic Memory for Structs

typedef struct person{
 char name[51];
 int age;
 double gpa;
} PERSON;
/* memory allocation */
PERSON *pbob = (PERSON *)malloc(sizeof(PERSON));
pbob->age = 42; //same as (*pbob).age = 42;
pbob->gpa = 3.5; //same as (*pbob).gpa = 3.5;
strcpy(pbob->name, “bob”); //same as strcpy((*pbob).name,

“bob”);
...
/* explicitly freeing the memory */
free(pbob);

Dynamic Memory for Structs

Java Comparison
public class Person
{
 String name;
 public int age;
 public double gpa;
}
// memory allocation
Person bob = new Person();
bob.age = 42;
bob.gpa = 3.5;
bob.name = “bob”
// bob is eventually freed
// by garbage collector

Dynamic Teammates

typedef struct player{
 char name[20];
 struct player *teammate;
} PLAYER;
PLAYER *getPlayer(){
 char *name = askUserForPlayerName();
 PLAYER *p = (PLAYER *)malloc(sizeof(PLAYER));
 strncpy(p->name, name, 20);
 p->teammate = NULL;
 return p;
}

Dynamic Teammates (2)

int main (){
 int nrPlayers, count = 0;
 PLAYER *pPlayer, *pTeam = NULL;
 nrPlayers = askUserForNumberOfPlayers();
 while (count < nrPlayers){
 pPlayer = getPlayer();
 pPlayer->teammate = pTeam;
 pTeam = pPlayer;
 ++count;
 }
 /* do other stuff with the PLAYERs */
 /* Exercise --write code to free ALL the PLAYERs */
 return 0;
}

Doubly-Linked Version
typedef struct player
{
 char name[20];
 struct player *nextteammate; /* can’t use TEAMMATE yet */
 struct player *prevteammate; /* can’t use TEAMMATE yet */
} TEAMMATE;
...
TEAMMATE *team, bob, harry, john;
team = &bob; /* first player */
strncpy(bob.name, “bob”, 20);
bob.nextteammate = &harry; /* next teammate */
bob.prevteammate = NULL; //or &john for circular
strncpy(harry.name, “harry”, 20);
harry.nextteammate = &john; /* next teammate */
harry.prevteammate = &bob;
strncpy(john.name, “john”, 20);
john.nextteammate = NULL; // &bob for circular linked list
john.prevteammate = &harry:

Dynamic Arrays

• As we noted, arrays cannot be returned from
functions

• However, pointers to dynamically allocated
arrays may be returned

char *getCharArray(int size){

 char *cp = (char *)malloc(size * sizeof(char));

 assert(cp != NULL);

 return cp;

}

Dynamic 2-D Arrays

• There are now three ways to define a 2-D array,
depending on just how dynamic you want them to be.
int board[8] [8];

• An 8 x 8 2-d array of int... Not dynamic at all
int *board[8];

• An array of 8 pointers to int. Each pointer represents a
row whose size is be dynamically allocated.

 int **board;
• A pointer to a pointer of ints. Both the number of rows

and the size of each row are dynamically allocated.

