AVR Assembler Examples

AVR specific examples

Credit to Dr. Robucci for slide information

m169pdef.inc

Include file detailing register and bit definitions

Excerpt:

] ;* When including this file in the assembly program file, all I/O register
mi169pdef.inc can be » ’ e -

;* names and I/O register bit names appearing in the data book can be used.
L ;* In addition, the six registers forming the three data pointers X, ¥ and
ft)llll(i 111 (:IIII)GEE;]JI ;* 2 have bzen assigned names XL - ZH. Highest RAM address for Internal
. ;* SRAM i= alsc defined
website

;* The Register names are represented by their hexadecimal address.

;* The Register Bit names are represented by their bit number (0-7).

.equ DDRB = 0x04
.equ PINB = 0x03
e PORTA = 0x02
.equ DDRA = 0x01

L<<PB5 = = B i
8b’00000001 << 5

allows

SBR — Set bits in reg
Equivalent to an ORI
REQUIRES MASKS, not
bit number

16, PORTB ;read PORTB latch
6,1 <<PB€)+ (1<<PBS) ;set PB€ and PBS
out PORTB, rdg ;output to PORTB

Timer Example

. egqu TIFRD = 0x153

TIFRO — Timer/Counterl Interrupt Flag register

From m169pdef‘1nc . equ TOVD = 0 ; Timer/Counter(Overflow Flag
. equ ocFOR =1 ; Timer/Counterl Output Compare Flag 0
allows
in rlé, TIFRO ;read the Timer Interrupt Flag Register
. skre rl&,TOVO ;test the overflow flag (use bitf)
In your program' rjmp TOVD is set jjump if set

jotherwise do something else

These allow better readability than the I/O register number

SRAM and Stack Pointer

This sets the stack
pOlnter tO the end Of .egu ER_QM_E-TFLR'I = QOx0100
the SRAM .equ SRAM SIZE = 1024

.egu RAMEND = 0x04ff

» HIGH(x) - upper 8
bits of a 16-bit word

= Low(x) - lower 8 allows
bits of a 16-bit word

= SPH is stack pointer

}li }1 LDI RO, HIGH(RAMEND) ; upper byte

8 OUT SPH, RO ;

o SPL 1s stack pointer LDI RO, LOW(REMEND) ; lower byte
low OUT SPL,RO

Necessary for stack
use

Resources

http://www.avr-asm-tutorial.net/avr en/beginner/index.html

http://www.avr-asm-tutorial.net/avr_en/beginner/COMMANDS.html
= Commands sorted by function

http://www.avr-asm-download.de/beginner en.pdf
Beginner introduction to Assembly of ATMEL-AVR pProcessors

MACROS

http://www.avrfreaks.net/forum/tutasmmacros-
assembler?name=PNphpBB2&file=viewtopic&t=101529

http://www.avrbeginners.net/assembler/macros.html

SUBROUTINES

http://www.avr-tutorials.com/assembly/writing-assembly-subroutines-avr-
microcontroller
Implementing Subrotines

http://www.avr-asm-tutorial.net/avr_en/beginner/index.html
http://www.avr-asm-download.de/beginner_en.pdf
http://www.avrfreaks.net/forum/tutasmmacros-assembler?name=PNphpBB2&file=viewtopic&t=101529
http://www.avrbeginners.net/assembler/macros.html
http://www.avr-tutorials.com/assembly/writing-assembly-subroutines-avr-microcontroller

Directives

.EQU — Set a symbol equal to a constant expression
= .EQU io_ offset = 0x23
.SET — assign a value to a label

= Can be redefined later in the program
= .SET FOO = 0x114

= .SET FOO = FOO+1
.DEF — Set a symbolic name on a register

= Can be redefined later in the program
s .DEF temp=R16

Macro Directive

What is a Macros?

In assembly programming a macro is basically a set of instruction
represented by a single statement. A macro can be seen as a new
instruction created by the programmer for the microcontroller.
Note however that this new instruction (the macro) is created by
using the existing instructions that are provided with the AVR
microcontroller.

.MACRO macroname

> Tells assembler that this is the start of a macro

When name is used later in program, definition is expanded at the
place it is used

Can take up to 10 parameters

= @0-@9

Terminated by . ENDMACRO

Macro Example

Syntax:

.MACRO macroname

Example:

.MACRO SUBI16 ; Start macro definition

subi @1,low(@0) ; Subtract low byte

sbci @2,high(@o0) ; Subtract high byte
.ENDMACRO ; End macro definition

.CSEG ; Start code segment

SUBI16 0x1234,r16,r17 ; Sub.0x1234 from r17:r16

Macro example 2

sInitialize the AVR microcontroller stack pointer

DI R16, low(RAMEND)
OUT SPL, R16
DI R16, high(RAMEND)

OUT SPH, R16

; Calling the MACRO:

LSP R16, RAMEND

MACRO Example 3

Using a MACRO to define UART Transmit
.MACRO UART Transmit
USART Transmit:
; Wait for empty transmit buffer
lIds TEMPo, UCSROA
sbrs TEMPo,UDRE
rjmp USART_Transmit
; send the data
Idi TEMP, @o
sts UDRo, TEMP
.ENDMACRO
Calling the MACRO
UART_Transmit 0x48 ;0x48 is ASCII equivalent for letter H
You can also directly use ‘H’
UART Transmit ‘H’

#define

- Create a pre-processor function-style macro

- Example
= #define BITMASK(x) (1<<x)

= #define BITMASK3(x1,x2,x3)
(BITMASK(x1)+BITMASK(x2)+BITMASK(x3))

Some built in functions

LOW/(expression) returns the low byte of an expression

HIGH (expression) returns the second byte of an
expression

BYTE2(expression) is the same function as HIGH
BYTE3(expression) returns the third byte of an expression
BYTE4(expression) returns the 4™ byte of an expression
LWRD(expression) returns bits 0-15 of an expression
HWRD(expression) returns bits 16-31 of an expression
PAGE(expression) returns bits 16-21 of an expression
EXP2(expression) returns 2" expression

Some built in functions(cont.)

LOG2(expression) returns the integer part of log2(expression)

INT() Truncates a floating point expression to integer (i.e.
discards fractional part%

FRAC() Extracts fractional part of a floating point expression
(i.e. discards integer partg).

Q7() Converts a fractional floating point expression to a form
suitable for the FMUL/FMULS/FMULSU instructions. (sign +
7-bit fraction)

Q15() Converts a fractional floating point to the form returned
})y the F)MUL/ FMULS/FMULSY instructions (sign + 15-bit
raction).

ABS() Returns the absolute value of a constant expression.

Stack and Functions

Using functions requires the stack

Using the stack requires that it be initialized

= See slide 4

After which point the following commands may
be used

s PUSH

= POP

s RCALL

o RET

Function Example

The program to the

right toggles the
logic value of pins
on portB with a
delay after each
change

include "m8&515def.inc"

Delay:
loop:

Pasted from =

;Initialize the microcontroller stack pointer
LDl R16, low({RAMEND)

OUT 5PL R16

LDl R16, high(RAMEND)

OUT 5PH, R16

;Configure portB as an output put
LDl R16, OxFF
OUT DDRE, R16

;Toggle the pins of portB
LDl R16, OxFF

OUT PORTE, R16
RCALL Delay

LDl R16, Ox00

OUT PORTE, Rl6
RCALL Delay

;Delay subroutine
LDI R17, OxFF
DEC R17

BRNE loop

RET

= ey T -y oo e e sk Ve - o by 5 wsrear e e - g oetrellEre

Setting IO

// _INCLUDE "m169Pdef. inc”
.ORG 0x00000

//compute memory mapped ioc address
-EQU ioc_offset = 0x20
-EQU PORTA MM = io_offset + PORTA ; PORTA is 0OxD2

/faet ifo bits using i/o reglister direct commands(cannot be used w/ ext. ifo regs)

SBI PORTA, 6 //set bit I/0 using bit number
CEI PORTA, & J/clear bit I/OD
SBI DORTA, 5 /iset bit I/O

//clear bit I/0 using indirect access
LDI EL , low (PORTA MM) //load immediate to register
LDI £H , high(PORTA MM) //low() and high() byte macroz provided automatically

LD Rl16, & //load indirect from memory to reguster R1l6 using memory
addreszas R31,R30

CBR Rl&, EXPZ(7) //clear bitS in register regquires mask instead of a bit number
5T %, Rié f/store indirect to memory address R31,R30 from regquster R16

//set bit I/0 using indirect access
LDI EZL , low (PORTA MM)

LDI %H , high (PORTA MM)

LD Ri16, %

SBR Rl6, EXPZ(7)

ST %, R1&

ffclear bit I/0 using direct (memory) access
LDS Rle , PORTA MM

CER R16, EXDPZ(6)

S5T5 PORTA MM, Rié

//set bit in I/0 using direct (memory) access
LDS Rle , PORTA MM

SBR R1&, EXDPZ(7)

S5TS5 PORTA MM, Rlé

Implementing Delays

Create a loop

ldi RTEMP, 255 ; 255 could also be a wvariabkle here
the delay:

dec RTEMP

brne the delay

Use a few nop instructions
nop ;5 1 clock
nop ;5 1 clock
nop ; 1 cleck

A combination for longer delays

1di BRTEMF, 255 ; 255 could also be a wariable hers
the delay:

nop

nop

nop

nop

nop

dec RTEMP

brne the delay

Create loops within loops

; outer loop

1di BTEMFE, 255 ; 255 could be a wariakle so the
; inner loop sets the delay step size

outer delay:

; inner locp

1di RTEMPZ, 122 ;

inner delay:

nop

nop

nop

nop

nop

dec RTEMEZ

brne inner delay

dec RTEMPB

brne outer delay

Using double-word operations for longer delays.
LDI 25, 0x01 //high

LDI 24, OxFF fﬁlo¢~\\\\\‘\‘\‘\\\
wooes R25 and R24

SUBIW RZ5:R24, 1
BENE Loop

Delays (continued)

All of the previous delay examples were software
defined

= Dependent upon CPU frequency
Note on nops (no operations)

= There may be productive work that can be done
with these clock cycles

= 1.e. check status registers, check I/0, etc...

Precise delays use hardware timers
= To be learned later

Jumping

- Conditional Jumps
» SBIC — Skip if bit in I/0 register cleared
= SBIS — Skip if bit in I/O register set
» SBRC — Skip if bit in register cleared
= SBRS — Skip if bit in register set
- Unconditional Jumps

o RJMP k:
- Program execution continues at PC+k+1
» 2 clock cycles, smaller address range
« JMP k:
- Program execution continues at k
- 3clock cycles, full address range

Combining jumps

def JOYSTICK INPORT =PINB

equ UP_BUTTON BIT =5;

equ UP_BUTTON MASK = (1=<UP_BUTTON_BIT);

equ UP_BUTTON MASK CMP = (0xFF - UP_BUTTON_MASK):
def RTEMP =116

sskap 1f bit in register set followed by branch
: branch occurs if button was pressed

sbis JOYSTICK PORT, UP BUTTON BIT

fmp somewhere

In comparison,

in ETEMP. JOYSTICE. POET
andi RTEMP, UP BUTTON MASK
bme somewhere

Combining Jumps (cont.)

Example: Wait on bit to change to a 1
= back_here:

= SBIS PINB, 0

= rjmp back_here

o ... (continue)

How to check or wait on multiple bits?

- Hint: .equ BUTTON_MASK =
(UP_MASK+DOWN_MASK)

