
AVR Assembler Examples
AVR specific examples

Credit to Dr. Robucci for slide information

m169pdef.inc

• Include file detailing register and bit definitions

SBR – Set bits in reg
Equivalent to an ORI
REQUIRES MASKS, not
bit number

1<<PB5 =
8b’00000001 << 5

m169pdef.inc can be
found in cmpe311
website

Timer Example

From m169pdef.inc

In your program:

These allow better readability than the I/O register number

SRAM and Stack Pointer

• This sets the stack
pointer to the end of
the SRAM
▫ HIGH(x) - upper 8

bits of a 16-bit word
▫ Low(x) - lower 8

bits of a 16-bit word
▫ SPH is stack pointer

high
▫ SPL is stack pointer

low
• Necessary for stack

use

Resources

• http://www.avr-asm-tutorial.net/avr_en/beginner/index.html

• http://www.avr-asm-tutorial.net/avr_en/beginner/COMMANDS.html
▫ Commands sorted by function

• http://www.avr-asm-download.de/beginner_en.pdf
▫ Beginner introduction to Assembly of ATMEL-AVR µProcessors

MACROS

• http://www.avrfreaks.net/forum/tutasmmacros-
assembler?name=PNphpBB2&file=viewtopic&t=101529

• http://www.avrbeginners.net/assembler/macros.html

SUBROUTINES

• http://www.avr-tutorials.com/assembly/writing-assembly-subroutines-avr-
microcontroller
▫ Implementing Subrotines

http://www.avr-asm-tutorial.net/avr_en/beginner/index.html
http://www.avr-asm-download.de/beginner_en.pdf
http://www.avrfreaks.net/forum/tutasmmacros-assembler?name=PNphpBB2&file=viewtopic&t=101529
http://www.avrbeginners.net/assembler/macros.html
http://www.avr-tutorials.com/assembly/writing-assembly-subroutines-avr-microcontroller

Directives

• .EQU – Set a symbol equal to a constant expression

▫ .EQU io_offset = 0x23

• .SET – assign a value to a label

▫ Can be redefined later in the program

▫ .SET FOO = 0x114

▫ ……

▫ .SET FOO = FOO+1

• .DEF – Set a symbolic name on a register

▫ Can be redefined later in the program

▫ .DEF temp=R16

Macro Directive

• What is a Macros?
• In assembly programming a macro is basically a set of instruction

represented by a single statement. A macro can be seen as a new
instruction created by the programmer for the microcontroller.

• Note however that this new instruction (the macro) is created by
using the existing instructions that are provided with the AVR
microcontroller.

• .MACRO macroname
▫ Tells assembler that this is the start of a macro

• When name is used later in program, definition is expanded at the
place it is used

• Can take up to 10 parameters
▫ @0-@9

• Terminated by .ENDMACRO

Macro Example

Syntax:

.MACRO macroname

Example:

.MACRO SUBI16 ; Start macro definition

subi @1,low(@0) ; Subtract low byte

sbci @2,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

.CSEG ; Start code segment

SUBI16 0x1234,r16,r17 ; Sub.0x1234 from r17:r16

Macro example 2

; Calling the MACRO:

LSP R16, RAMEND

MACRO Example 3
• Using a MACRO to define UART Transmit
.MACRO UART_Transmit

USART_Transmit:
; Wait for empty transmit buffer
lds TEMP0, UCSR0A
sbrs TEMP0,UDRE
rjmp USART_Transmit
; send the data
ldi TEMP, @0
sts UDR0, TEMP

.ENDMACRO
• Calling the MACRO
UART_Transmit 0x48 ;0x48 is ASCII equivalent for letter H
You can also directly use ‘H’
UART_Transmit ‘H’

#define

• Create a pre-processor function-style macro

• Example

▫ #define BITMASK(x) (1<<x)

▫ #define BITMASK3(x1,x2,x3)
(BITMASK(x1)+BITMASK(x2)+BITMASK(x3))

Some built in functions

LOW(expression) returns the low byte of an expression
HIGH(expression) returns the second byte of an

expression
BYTE2(expression) is the same function as HIGH
BYTE3(expression) returns the third byte of an expression
BYTE4(expression) returns the 4th byte of an expression
LWRD(expression) returns bits 0-15 of an expression
HWRD(expression) returns bits 16-31 of an expression
PAGE(expression) returns bits 16-21 of an expression
EXP2(expression) returns 2^expression

Some built in functions(cont.)

LOG2(expression) returns the integer part of log2(expression)
INT() Truncates a floating point expression to integer (i.e.

discards fractional part)
FRAC() Extracts fractional part of a floating point expression

(i.e. discards integer part).
Q7() Converts a fractional floating point expression to a form

suitable for the FMUL/FMULS/FMULSU instructions. (sign +
7-bit fraction)

Q15() Converts a fractional floating point to the form returned
by the FMUL/FMULS/FMULSY instructions (sign + 15-bit
fraction).

ABS() Returns the absolute value of a constant expression.

Stack and Functions

• Using functions requires the stack

• Using the stack requires that it be initialized

▫ See slide 4

• After which point the following commands may
be used

▫ PUSH

▫ POP

▫ RCALL

▫ RET

Function Example

• The program to the
right toggles the
logic value of pins
on portB with a
delay after each
change

Setting IO

Implementing Delays

R25 and R24

Delays (continued)

• All of the previous delay examples were software
defined

▫ Dependent upon CPU frequency

• Note on nops (no operations)

▫ There may be productive work that can be done
with these clock cycles

▫ i.e. check status registers, check I/O, etc…

• Precise delays use hardware timers

▫ To be learned later

Jumping

• Conditional Jumps
▫ SBIC – Skip if bit in I/O register cleared
▫ SBIS – Skip if bit in I/O register set
▫ SBRC – Skip if bit in register cleared
▫ SBRS – Skip if bit in register set

• Unconditional Jumps
▫ RJMP k:

 Program execution continues at PC+k+1
 2 clock cycles, smaller address range

▫ JMP k:
 Program execution continues at k
 3clock cycles, full address range

Combining jumps

Combining Jumps (cont.)

• Example: Wait on bit to change to a 1

▫ back_here:

▫ SBIS PINB, 0

▫ rjmp back_here

▫ … (continue)

• How to check or wait on multiple bits?

▫ Hint: .equ BUTTON_MASK =
(UP_MASK+DOWN_MASK)

