Analog to Digital Converters
ADCs — AVR implementation

Digital Representation

How do you represent a real number in a given
number of bits

= Quantization — mapping of codes to physical
values

Choosing quantization levels

= Assume you want to represent oV-5V given a 10-
bit ADC

= OV =0, 5V =1023
o LSB ~= 0.0488V
= MSB ~= 2.5V

Analog to Digital Converters

Devices which convert a physical quantity
(usually voltage) to a digital number

» Abbreviated ADC, A/D, Ato D

Multiple kinds of architectures

= Parallel/Serial stages

= Single/Multiple conversion steps

= One or multiple clock cycles

Each architecture has tradeoffs

» Power/size/speed/accuracy

R
AtMega169P ADC

Figure 22-1. Analog to Digital Converter Block Schematic

ADE CosERSION
COHAPLETE liud
-
ADTER
L EL) " | .
| [ressemms, | | [[mnmes™]
221 Features 1 e BHE & A
»| THIGEER E
* 10-bit Resolution o Rl
» 0.5 LSB Integral Non-linearity N [Frescnen Jed
» 2 LSB Absolute Accuracy -
* 13 ps - 260 pys Conversion Time (50 kHz to 1 MHz ADC clock) B —
—_Lp o 15 ksps at Maximum Resolution (200 kHz ADC clock)
*_Eight Multiplexed Single Ended Input Channels x CORPARATR
- 10-ENT D

» Optional Left Adjustment for ADC Result Readout

* 0 -V ADC Input Voltage Range

* Selectable 1.1V ADC Reference Voltage DAC?

* Free Running or Single Conversion Mode m '
. SINGLE ERDED ! DFFERENTIAL SELECTION

ADCT
» ADC Start Conversion by Auto Triggering on Interrupt Sources sacs]
* Interrupt on ADC Conversion Complete saea[] o - e

= Sleep Mode Noise Canceler soea[l_[
e —r s LJ_
el] >
mnuE
mmD '_'_._._,_,..-r"

Port F L

R
AtMega169P ADC

From the datasheet

The AVR ADC is based on the analog circuitry shown in Figure 25-8 on page 268 with a succes-
sive approximation algorithm implemented in the digital logic. When used in Boundary-scan, the
problem is usually to ensure that an applied analog voltage is measured within some limits. This
can easily be done without running a successive approximation algorithm: apply the lower limit
on the digital DAC[9:0] lines, make sure the output from the comparator is low, then apply the
upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

Figure 25-9. Analog to Digital Converter.

VECHEM B,

AREF e

Successive Approximation (Hardware)

SHA £

> Sampleand oo~ TIMING
COMPARATOR
Hold o | sa , DRDY,
D AC j_’ CONTROL OR BUSY
. LOGIC:
= Digital to APPROYIMATION
Analog r o] eary
DAC ra =
Converter)%
OUTPUT

Figure 1: Basic Successive Approximation ADC
(Feedback Subtraction ADC)

From Analog Devices ADC Architectures Il document by Walt Kester

Successive Approximation (Implementation)

- Algorithm
= Compare against half
of range at each point

= Continue narrowing
until limited to LSB

= Error upper bounded
by 1 LSB (assuming
value is just under
next LSB, accurate

comparator and
DAC)

ASSUME X = 45
TEST
ISX2327? YES & RETAIN32 & 1
IS X 2(32+16) ? NO < REJECT16%9 0
IS X 2(32+8) ? YES® RETAINS & 1
ISX2(3248+4)? YES < RETAING 9 1
(HN) ISX2(32+8+4+2)7? NO 9 REJECT2 & 0

TOTALS: X=32+8+4+1 = 45, = 101101,

Figure 4: Successive Approximation ADC Algorithm

From Analog Devices ADC Architectures Il document by Walt Kester

Digital to Analog Converter

Devices which convert a digital number (usually
voltage) to a physical quantity
» Abbreviated DAC, D/A, D to A

Several Implementations
= We will look at the Pulse Width Modulation
(PWM) method

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare
match between TCNTO and OCROA, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
ing frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use erglighr—Hais- makes the fast PWM mode well suited
for power regulation, rectificati@®,|and DAC applications| High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

PWM DAC Implementation

- Recall the discussion of the LED brightness
using PWM
= Higher duty cycle = bright
= Lower duty cycle = dim
- Similar idea
= Higher duty cycle = larger voltage
= Lower duty cycle = smaller voltage

= Apply PWM digital voltage across RC circuit to
smooth waveform

€L

5
PWM voltage is smoothed .
by RC circuit 4 | /\ // /‘\ / /\ /
Strength of RC circuit 36 / \\ // , \// ”akk,.li;ff*‘ 7 VT 7 1\
determines accuracy of 5 / / o // lﬂ:m)
mean voltage and time to / / ‘ / uAc2)

25 - a N URcy
mean voltage / \/ /

p) 4
Note that RC1 achieves 5 /
mean voltage in about 3 / A /
PWM cycles where RC3 1 / /
achievesitin 8 "5 S

From: http://www.avr-asm-tutorial.net/avr en/AVR ADC500.htmi

Successive Approximation Timing

How many clock cycles would the AVR 10-bit
hardware take to convert with Successive

Approximation?
= Assume that the DAC can achieve accurate results
within 1 clock cycle

Binary Search Tree
= Therefore, an N-bit conversion takes N-steps

= 10 clock cycles for our example

Successive Approximation Timing

SAMPLE X SAMPLE X+1 SAMPLE X+2

A
CONVST

CONVERSION __ TRACK/ | CONVERSION __: TRACK/ !
TIME | ACQUIRE | TIME ' ACQUIRE |

i
'
[Fe—
i
'
i

i

EOC,
BUSY v

DATA X X+1

Figure 2: Typical SAR ADC Timing

An N-bit conversion takes N steps. It would seem on superficial examination that a 16-bit
converter would have twice the conversion time of an 8-bit one, but this is not the case. In an
8-bit converter, the DAC must settle to 8-bit accuracy before the bit decision is made, whereas in
a 16-bit converter, it must settle to 16-bit accuracy, which takes a lot longer. In practice, 8-bit
successive approximation ADCs can convert in a few hundred nanoseconds, while 16-bit ones
will generally take several microseconds.

From Analog Devices ADC Architectures Il document by Walt Kester

AVR Actual Timing

The fl rSt ConverS|0n (after enabllng Figure 22-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Faaxl

ADC) takes 25 ADC clock cycles in " o T
. - . Doy Meriboar 1 2| 1z 13 11 15 18 a7 hE-] 19 i Fal Frd 3 24 JS-I I1 - 3
order to initialize the analog e LML MMM UL
UL ! =
i i ADEW . i ! i [
circuitry iy S ..
- M, : :—
soon TTILITTTTEITTR
anct m
\m i *\hw_m ﬁ.m._f ‘_m -
A” Subsequent COI’]VGI‘SIOI’]S take Figure 22-5. ADC Timing Diagram, Single Conversion
13 ADC clock cycles. Including R N N R R I
sample and hold and conversion secces _[TLF L L L LU LML UL L L UL
complete e M Vit
ADIF | ' —

oo I T T T T T T TTTTITI TN oo e o
soes T T T T T T T T T T T L8 of Resul

1_‘\"—- Sa &
*\ mple & Hold Gam:fsm __/-. ‘XMUKH’H‘] REFS

ML and REFS
Update

R RRRRRRRRRRRRRR
Using the AVR ADC - Polling

int main (wvoid){
DDRE |= {1 <<« 2): // Set LED1 as output
DDRG |= (1 << 0); f/ Set LEDZ as cutput

ADCSRA |= (1l << BDPS2) | (1 << BDPS1) | (1 << RADPSO): // Set ADC prescalar to 128 - 125KHz sample rate @ 16MHz

ADMUX |= (1 =« REF30): 7/ Set ADC reference to AVCC
ADMUX |= (1 == ADLAR); // Left adjust ADC result to allow easy £ kit reading

ADMIOE |= 0:; f/5et single ended input to ADCO {didn't actually change anything)

ADCSBEA |= (1 == ADFR): [/ Set ADC to Free-Bunning Mode
ADCSRA |= (1 =< RDEN): // Enakle ADC
ADCSRA |= (1 << RADSC): // Start AZD Conversions

for(;;){ // Loop Forewver

if (ADCH < 128) |
PORTE |= (1 << 2): // Turn on LED1
PORIG &= ~(1l == 0); // Turn cff LEDZ

1

elzse|
PORTE &= ~(l << 2): // Turn off LEDI1
PORTG |= (1 << 0): // Turn on LEDZ

From http://www.avrfreaks.net/forum/tut-c-newbies-guide-avr-adc

R RRRRRRRRRRRRRR
Using the AVR ADC - Interrupt

int main (void)

I
DORE |= (1 << 2}: // Set LEDL as output
DDRG |= (1 <= 0): // Set LED2 as ocutput

ADCSRA |= (1 << RDPS2) | (1 << ADPS1) | (1 << BDPS0): // Set ADC presgaler to 128 — 125KHHz sample rate B 16MHz

BDMUX |= (1 << REFS0); // Set LDC reference to AVCC
ADMUX |= (1 << ADLAR): // Left adjust ADC result to allow easy & kit reading

S5 No MOX wvalues needed to be changed to use ADCO

ADCSERA |= (1 <« ADFR); // Set ADC to Free-Bunning Mode
ADCSRA |= (1 << RADEN): // Enable ADC

ADCSRA |= (1 << ADIE): // Enable ADC Interrupt
sei(): // Enable Glockal Interrupts

ADCSRA |= (1 << RDSC); // Start R2D Conversions

for({:;:)}{} // Loocp Forever
‘1
LSR{RDC_VEGE}
I
| if{ADCH <« 1228) |
PORTE |= (1 << Z): // Turn on LED1
BORIG &= ~(1 <= 0): // Turn off LEDZ

}
| else {
BORTE &= ~(1 << 2); // Turn off LEDI
PORTG |= (1 << 0); // Turn on LED2
1

From http://www.avrfreaks.net/forum/tut-c-newbies-guide-avr-adc

Datasheet Reading Example

Find what pins connect to the ADC

Find what control registers need to be modified
Learn about operation of ADC

Learn what ADC values mean

