ADC In AVR Micro-Controller

Required for Homework-4

Also Refer Chapter 20 and 21
from Data Sheet

5y 1023
2'5“"- 212 ATMEGA16/32
« 8 channels » 8
pins
* 10 bit resolution
oV 0 + 219 =1024 steps

Sensor Analog ADC Value
Qutput

_R Micro-Controller

m 10-bit Resolution
m 0.5 LSB Integral Non-linearity
m 2 L.SB Absolute Accuracy

m 13 ys - 260 pys Conversion Time (50 kHz to 1 MHz
ADC clock)

m Up to 15 ksps at Maximum Resolution (200 kHz
ADC clock)

m Eight Multiplexed Single Ended Input Channels

_’R Micro-Controller

m Optional Left Adjustment for ADC Result Readout
m 0 - VCC ADC Input Voltage Range

m Selectable 1.1V ADC Reference Voltage

m Free Running or Single Conversion Mode

m ADC Start Conversion by Auto Triggering on
Interrupt Sources

m Interrupt on ADC Conversion Complete

_essive Approximation

W Voac

BMALOG [N —» TRACK/HOLD Ny~ COMPARATOR "
Voac :r VREF -

HaWREF 4
VREE M-BIT
— *| DAC 12V REF
1

r 1
]
N"l-.“ \

DIGITAL DATA OUT V4VREF -
M-BIT {SERIAL OR PARALLEL)
REGISTER >

= TIME

1 1 1 1
SAR LOGIC E|T3=|:|:BITE=1:BIT1=|:|:B|TU=1:
(MSE) 1 o (LsBY

m The ATmegal69P features a 10-bit successive
approximation ADC

m The minimum value represents GND and the maximum
value represents the voltage on the AREF pin (Pin #62)
minus 1 LSB.

m Analog inputs are evaluated as a portion or ratio of a
(doubled) reference single and converted to an integer scale
ADC value from 0 to 210-1

_ration In ATMegal69p

m The analog input channel is selected by writing to
the MUX bits in ADMUX.

m The ADC is enabled by setting the ADC Enable bit,
ADEN in ADCSRA

+ Voltage reference and input channel selections will not go
into effect until ADEN is set

m The ADC generates a 10-bit result which is

presented in the ADC Data Registers, ADCH and
ADCL

<« ADCL must be read first, then ADCH, to ensure that the
content of the Data Registers belongs to the same
conversion

ADC Prescaler

£DEN :D—P Reset
ese
START 7-BIT ADC PRESCALER

CK ——»

CK/2
CK/4
CK/8
CK/16
CK/32
CK/64
CK/128

Y ¥ Y

ADPS0
ADPS1
ADPS2

ADC CLOCK SOURCE

il
-
<l

Ll

m ADC requires an input clock frequency between
50kHz and 200kHz to get maximum resolution.

« If a lower resolution than 10 bits is needed, the input

clock frequency to the ADC can be higher than 200 kHz
to get a higher sample rate.

m To Access and Control ADC on ATMega Micro-

Controller you need to focus on following Registers:

1.

2
3.
4

ADMUX — ADC Multiplexer Selection Register
ADCSRA — ADC Control and Status Register A
ADCL and ADCH — ADC Data Registers
SFIOR — Special Function I/O Register

_ ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0

I REFS1 REFS0 ADLAR MUX4 MUX3 MuUX2 MUX1 MUXO0 I ADMUX
Read/Write RW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

m Bits 7:6 — REFS1:0 — Reference Selection Bits

+ These bits are used to choose the reference voltage. The
following combinations are used.

m Bit 5 - ADLAR — ADC Left Adjust Result
«+ Make it ‘1’ to Left Adjust the ADC Resuilt.

m Bits 4:0 — MUX4:0 — Analog Channel and Gain
Selection Bits

m To Initialize ADMUX, we write

ADMUX = (1<<REFSO);

_— ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0

[ADEN | ADSC ADATE ADIF ADIE ADPS52 | ADPS1 ADPSO I ADCSRA
Read/\Write RN = RMW RW R RW RN RW
Initial WValue 0 0 0 a0 0 0 0 0

m Bit 77— ADEN - ADC Enable
<+ Enables the ADC feature

m Bit 6 — ADSC — ADC Start Conversion

« Write this to ‘1’ before starting any conversion. This 1 is
written as long as the conversion Is in progress, after
which it returns to zero.

m Bit 5- ADATE — ADC Auto Trigger Enable

« Setting it to ‘1’ enables auto-triggering of ADC. ADC is
triggered automatically at every rising edge of clock
pulse.

_ — ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0

[ADEN | ADSC ADATE ADIF ADIE ADPS52 | ADPS1 ADPSO I ADCSRA
Read/\Write RN = RMW RW R RW RN RW
Initial WValue 0 0 0 a0 0 0 0 0

m Bit 4 — ADIF — ADC Interrupt Flag

«+ Whenever a conversion is finished and the registers are
updated, this bit is set to ‘1" automatically.

m Bit 3—- ADIE — ADC Interrupt Enable

<« When this bit is set to ‘1°, the ADC interrupt is enabled.
This is used in the case of interrupt-driven ADC.

m Bits 2:0 — ADPS2:0 — ADC Prescaler Select Bits

« The prescaler (division factor between XTAL frequency
and the ADC clock frequency) is determined

m [0 Initlalize ADCSRA as follows:

ADCSRA = (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS®); // prescaler = 128

_CH — ADC Data Registers

Bit 15 14 13 12 1 10 9 8
| - - - - - - ADCS | ADCB | ADCH
| ADC7 | ADCé | ADC5 | ADC4 | ADC3 | ADC2 | ADC1 | ADCO | ADCL
T 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ADLAR =0
Bit 15 14 13 12 11 10 9 8
ADCY ADCE ADCT ADCE ADCS ADC4 ADC3 ADC2 | ADCH
ADC1 | ADCO - - - - - - | ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 1] 0 0 1] 0 D ADLAR =1

m Since the ADC has a resolution of 10 bits, it requires 10 bits to store the
result. Thus, ADCL and ADCH (ADC Low byte and ADC High byte) as
follows.

m Upon setting ADLAR = 1, the conversion result is left adjusted.

_cial Function I/O Register

Bit 7 6 5 4 3 2 1 0
ADTS2 ADTS1 ADTSOD - ACME PUD PSR2 PSR10

ReadWrite R R RN R R RN R RAW

Initial Yalue 0] 0 1] 0 1] 0 0

SFIOR

m In normal operation, we do not use this register. This register
comes into play whenever ADATE (in ADCSRA) is set to ‘1".

m Bits 7:5 - ADC Auto Trigger Source

<+ Whenever ADATE is set to ‘1’, these bits determine the trigger source
for ADC conversion. There are 8 possible trigger sources.

ADTS2 ADTS1 ADTSO0 Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event

and Reading Values

void adc_init()

{
// AREF = AVcc
ADMUX = (1<<REFS0); A DC
// ADC Enable and prescaler of 128 I N Itl al I Zatl on
// 16000000/128 = 125000
ADCSRA = (1<<ADEN)| (1<<ADPS2)| (1<<ADPS1)| (1<<ADPSO0);
}

uint16_t adc_read(uint8_t ch)

{ .
// select the corresponding channel 0~7 A DC Read I n g
// ANDing with 7 will always keep the value
// of ‘ch’ between 0 and 7 Val ues

ch &= 0b00000111; // AND operation with 7
ADMUX = (ADMUX & 0xF8)|ch; // clears the bottom 3 bits before ORing

// start single convertion
// write 1" to ADSC
ADCSRA | = (1<<ADSQO);

// wait for conversion to complete
// ADSC becomes 0" again

// till then, run loop continuously
while(ADCSRA & (1<<ADSQ));
return (ADC);

