
Implementation of interrupts are not explicitly addressed by the
C language. It is dependent on the compiler.

We are using avr gcc so we will refer to:
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

ISR attributes

#define ISR_BLOCK

#define ISR_NOBLOCK

#define ISR_NAKED

#define ISR_ALIASOF(target_vector)

Commands to Enable and
disable interrupts:

#define sei()
#define cli()

Macros for writing interrupt handler
functions

#define ISR(vector, attributes)
#define SIGNAL(vector)

#define EMPTY_INTERRUPT(vector)

#define ISR_ALIAS(vector, target_vector)

#define reti()

#define BADISR_vect Catch-all interrupt vector

Sample Interrupt Definition:
#include <avr/interrupt.h>

ISR(ADC_vect) //vector names provided by compiler

{

 // user code here

}

AVR Interrupts in C

 Lecture Fall2013 Page 1

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga5fc50a0507a58e16aca4c70345ddac6a
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga44569cb914d2aaf8fbb436f8f7c4ca68
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga8b4c7e44627db0a60d676213add42d64
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gaa87c0c624b62f40a17539be6946c3e26
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gaad5ebd34cb344c26ac87594f79b06b73
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga68c330e94fe121eba993e5a5973c3162
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga67cd0dea412157775c2f2a3ffe9fb8ff
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga751c22101f7e8f2fbe792c64a81f8dba
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gade46eb4e42cc9d56c19b1f91448f1b76
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga3b991e8168db8fc866e31f9a6d10533b
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga1f6459a85cda682b2163a20af03ac744
http://www.nongnu.org/avr-libc/user-manual/interrupt_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f

Available interrupt vector names can be found in compiler
documentation:
http://www.nongnu.org/avr-libc/user-
manual/group__avr__interrupts.html

Interrupts and Vector Names available
for AVR

 Lecture Fall2013 Page 2

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

External interrupts can't don't work on the
timescale of a debugger.



The instruction pointer seemingly jumps around
when stepping through code.



Worse is when an interrupt vector is not defined
and program seemly resets itself for no reason.



Creating a default ISR using BADISR_vect and
printing a message or turning on an LED helps
detect this!



Debugging interrupt-driven code is often difficult ○

A very common error students had when working on
projects had been calling of interrupts that were not
defined.

•

BADISR_vect

 Lecture Fall2013 Page 3

ISR(XXX_vect, ISR_NOBLOCK)
{
 ...
}

ISR_NOBLOCK attribute takes care of calling sei() ASAP.
sei is called BEFORE the prolog (which includes commands to save
state), so it calls it sooner than if sei() is just added to default

ISRBLOCK version:

ISR(XXX_vect, ISR_BLOCK)
{
 sei(); //enables interrupts AFTER PROLOGE
 ...
}

Nested interrupts require interrupts to be enabled during interrupt
service routine execution.

Allowing Nested Interrupt Calls
(ISR_NOBLOCK)

 Lecture Fall2013 Page 4

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga44569cb914d2aaf8fbb436f8f7c4ca68
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga44569cb914d2aaf8fbb436f8f7c4ca68

In rare circumstances, in interrupt vector does not need any code to
be implemented at all. The vector must be declared anyway, so
when the interrupt triggers it won't execute the BADISR_vect code
(which by default restarts the application).
This could for example be the case for interrupts that are solely
enabled for the purpose of getting the controller out of
sleep_mode().
A handler for such an interrupt vector can be declared using the
EMPTY_INTERRUPT() macro, which has no body

Example:
EMPTY_INTERRUPT(ADC_vect); //no body

Pasted from <http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html>

Empty interrupt service routines

 Lecture Fall2013 Page 5

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga751c22101f7e8f2fbe792c64a81f8dba
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga751c22101f7e8f2fbe792c64a81f8dba
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

In some circumstances, the compiler-generated prologue and
epilogue of the ISR (responsible for saving and restoring
states) might not be optimal for the job. Perhaps the register
states do not need to be saved and restored by the ISR. A
manually defined ISR could be considered, particularly to
speedup the interrupt handling.

This can be done with inline assembly or by creating a naked
ISR:

ISR(TIMER1_OVF_vect, ISR_NAKED)

{

 PORTB |= _BV(0); // results in SBI which

 // does not affect SREG

 reti();

}

Pasted and modified from <http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html>

Manually defined ISRs (NAKED ISR)

 Lecture Fall2013 Page 6

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga8b4c7e44627db0a60d676213add42d64
http://www.nongnu.org/avr-libc/user-manual/group__avr__sfr.html#ga11643f271076024c395a93800b3d9546
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#ga3b991e8168db8fc866e31f9a6d10533b
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

In some circumstances, the actions to be taken upon two
different interrupts might be completely identical so a single
implementation for the ISR would suffice. For example, pin-
change interrupts arriving from two different ports could logically
signal an event that is independent from the actual port (and
thus interrupt vector) where it happened. Sharing interrupt
vector code can be accomplished using the ISR_ALIASOF()

attribute to the ISR macro:

ISR(PCINT0_vect)

{

 ...

 // Code to handle the event.

}

ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));

<http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html>

Shared ISRs
(Two vectors sharing ISR code)

 Lecture Fall2013 Page 7

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gaa87c0c624b62f40a17539be6946c3e26
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gad28590624d422cdf30d626e0a506255f
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html#gaa87c0c624b62f40a17539be6946c3e26
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c

/* $Id: lesson10.c,v 1.2 2009/02/08 15:55:47 ckuethe Exp $ */
/*
* Copyright (c) 2009 Chris Kuethe <chris.kuethe@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

Pasted from <https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c>

#include <avr/io.h>

#include <avr/interrupt.h>

volatile uint8_t intrs; //global var to count interrupt events

ISR(TIMER0_OVF_vect) {

/* this ISR is called when TIMER0 overflows */

intrs++;

/* strobe PORTB5*/

if (intrs >= 61){ //LED is toggled every 62 times this is called

PORTB ^= _BV(5); //_BV is a macro _BV(5) is same as (1<<5)

intrs = 0;

}

}

Pasted from <https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c>

Example C code Timer and Interrupts

 Lecture Fall2013 Page 8

https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c
https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c
https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c

int main(void) {
/*

* set up cpu clock divider. the TIMER0 overflow ISR toggles the

* output port after enough interrupts have happened.

* 16MHz (FCPU) / 1024 (CS0 = 5) -> 15625 incr/sec

* 15625 / 256 (number of values in TCNT0) -> 61 overflows/sec

*/

TCCR0B |= _BV(CS02) | _BV(CS00);

/* Enable Timer Overflow Interrupts */

TIMSK0 |= _BV(TOIE0);

/* other set up */

DDRB = 0xff; //set pin direction

TCNT0 = 0; //set timer

intrs = 0; //set overflow counter

/* Enable Interrupts */

sei();

 while (1); /* empty loop */

}

Pasted from <https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c>

 Lecture Fall2013 Page 9

https://www.mainframe.cx/~ckuethe/avr-c-tutorial/lesson10.c

The External Interrupts are triggered by
the INT0 pin or any of the PCINT15..0
pins. Observe that, if enabled, the
interrupts will trigger even if the INT0
or PCINT15..0 pins are configured as
outputs. This feature provides a way of
generating a software interrupt. The pin
change interrupt PCI1 will trigger if
any enabled PCINT15..8 pin toggles.
Pin change interrupts PCI0 will trigger
if any enabled PCINT7..0 pin toggles.
The PCMSK1 and PCMSK0 Registers
control which pins contribute to the pin
change interrupts. Pin change interrupts
on PCINT15..0 are detected
asynchronously. This implies that these
interrupts can be used for waking the
part also from sleep modes other than
Idle mode.

Pin
Change
Interrupt
Pins

External Interrupt Source 0 Pin

Pin Change Interrupts

 Lecture Fall2013 Page 10

controls trigger for INT0 pin, low-level, any change, falling edge, or rising edge
 EICRA – External Interrupt Control Register A

Controls enables for interrupts PCIE1 PCIE0 and INT0

EIMSK – External Interrupt Mask Register

Flag bits for interrupts
PCIF1 are cleared when ISR is executed or when a 1 (yes a 1) is written to it
INTF0 is cleared when ISR is executed, when a 1 is written to it, or when INT0 is
configured as level-interrupt

EIFR – External Interrupt Flag Register

Have bits to enable individual pins to trigger interrupts on their change
1 enables and 0 is disable

PCMSK1 – Pin Change Mask Register 1

PCMSK0 – Pin Change Mask Register 0

PCMSK1,PCMSK0

the global interrupt
enable



EIMSK

PCMSK1 or PCMSK0

Each pin change interrupt
enable is controlled at
THREE levels rather than
two by three bits

Pin Change Interrupt Registers

 Lecture Fall2013 Page 11

Be aware that when using mechanical sources for
interrupts they may trigger multiple ISR calls depending on
the situation. Our buttons seem to be debounced.

Note: As an experiment, you can try to count the number of
transitions by using an interrupt-based software counter.
Later we will use a hardware timer trigger of a pin that can
do this even more precisely.

Buttons and Interrupts

 Lecture Fall2013 Page 12

Optional Reading Material: Location of Interrupts

 Lecture Fall2013 Page 13

Move_interrupts:
; Get MCUCR
in r16, MCUCR
mov r17, r16
; Enable change of Interrupt Vectors
ori r16, (1<<IVCE)
out MCUCR, r16
; Move interrupts to Boot Flash section
ori r17, (1<<IVSEL)
out MCUCR, r17
ret

void Move_interrupts(void)
{
uchar temp;
/* Get MCUCR*/
temp = MCUCR;
/* Enable change of Interrupt Vectors */
MCUCR = temp | (1<<IVCE);
/* Move interrupts to Boot Flash section
*/
MCUCR = temp | (1<<IVSEL);
}

Two possible locations for interrupt vector table boot and application

Special sequence to change interupt vector table selection to prevent accidental change, involves
a lock bit.

See 11.2 Moving Interrupts Between Application and Boot Space for
more details.

11.2 Moving Interrupts Between Application and Boot Space
Friday, April 01, 2011 10:32 AM

 Lecture Fall2013 Page 14

Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the
Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section ”Boot Loader Support – Read-While-Write
Self-Programming” on page 280 for details.
• Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared
by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will
disable
interrupts, as explained in the description in ”Moving Interrupts Between Application and Boot
Space” on page 59. See Code Example.

11.2.1 MCUCR – MCU Control Register

Friday, April 01, 2011 10:35 AM

 Lecture Fall2013 Page 15

