
Embedded System Memory Usage

 On embedded systems, memory and storage are

extremely limited

 AVR ATMega169P

 16 Kbytes of In-System Self-programmable Flash

program memory

 512 Bytes EEPROM

 1 Kbytes Internal SRAM

 The biggest risk in memory management on

embedded systems is dynamic memory allocation

1

ATmega169P: Data Memory Layout

2

Storing and Retrieving Data in the Program Space

 Use the PROGMEM macro found

in <avr/pgmspace.h> and put it after the

declaration of the variable, but before the initializer

 unsigned char mydata[11][10] PROGMEM

 Use the appropriate pgm_read_* macro

 byte = pgm_read_byte(&(mydata[i][j]));

3

http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/pgmspace_8h.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#ga75acaba9e781937468d0911423bc0c35
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html#ga73084a8bbde259ffae72980354b3f027

Avoiding Dynamic Memory Allocation

 Heap allocation, and therefore how data get laid

out in memory, is difficult to predict.

 When you allocate on the heap you run the risk of

memory leaks—that is, allocating memory and not

freeing it.

 The memory management system adds processing

and memory overhead for every allocation and de-

allocation

 Bad references are more likely to happen when

dealing with pointers to freed dynamic memory,

and there’s no OS oversight to report segmentation

violations.

4

Memory Usage Tracking

 When we compile a program the compiler reports

how much data memory is allocated statically, but

not how much memory will be allocated at run-

time

 But if you tell the compiler to allocate them

statically, in the .bss or .data segments, then it can

include them in its memory usage calculation

 Example:
void do_something()
{
 char str[64]; // 64-byte string is allocated on the stack.
snprintf(str, sizeof(str), "Some text\n\r");
}

5

Using Memory Efficiently
Discussion VI (Version 2.0)

UMBC - CE

October 5, 2015

Version 1.0 - Initial Document
Version 2.0 - Fixed Typos

Memory Sections Tips

On-board RAM External RAM

0
x
0
1
0
0

0
x
0
4
F
F

0
x
0
5
0
0

0
x
F
F
F
F

__data_start

__data_end == __bss_start

__bss_end

*(__malloc_heap_start) == __heap_start

.data

variables

.bss

variables HEAP STACK

RAMENDSP

*(__brkval) (<= *SP - *(__malloc_margin))

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Global & Static Variables

On-board RAM External RAM

0
x
0
1
0
0

0
x
0
4
F
F

0
x
0
5
0
0

0
x
F
F
F
F

__data_start

__data_end == __bss_start

__bss_end

*(__malloc_heap_start) == __heap_start

.data

variables

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Global & Static Variables

On-board RAM External RAM

0
x
0
1
0
0

0
x
0
4
F
F

0
x
0
5
0
0

0
x
F
F
F
F

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Global & Static Variables

On-board RAM External RAM

0
x
0
1
0
0

0
x
0
4
F
F

0
x
0
5
0
0

0
x
F
F
F
F

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Tips for using program space
I What happens when you run out of memory ?

I Data should be below 1K bytes

I Shorten your prompts (reuse parts of your string)

I Don’t have multiple temporary string variables in memory at the same time

I Have gcc optimize for space

(include -Os option during compilation)

I Check your stack pointer

printf("sp:%d\n",SP);

I Documentation for memory sections available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

Memory Sections Tips

Using program space
I AVR has a library for keeping const data in program memory (flash) and

accessing it directly instead of using RAM

I Program Memory has 16KB space

I Example functions available in stdio.h

I printf_P

I sprintf_P

I fprintf_P

I fputs_P

I fscanf_P

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Using program space
I AVR has a library for keeping const data in program memory (flash) and

accessing it directly instead of using RAM

I Program Memory has 16KB space

I Example functions available in stdio.h

I printf_P

I sprintf_P

I fprintf_P

I fputs_P

I fscanf_P

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Using program space
I AVR has a library for keeping const data in program memory (flash) and

accessing it directly instead of using RAM

I Program Memory has 16KB space

I Example functions available in stdio.h

I printf_P

I sprintf_P

I fprintf_P

I fputs_P

I fscanf_P

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Using program space
I #include <avr/pgmspace.h>

I Declare const strings using special flag PROGMEM

//PROGMEM used to locate a variable in flash ROM

const PROGMEM char myString[] = "Repeated Use";

I You can create special pointers using PGM_P and access the data using a

special macro pgm_read_byte

I Documentation is available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Memory Sections Tips

Using program space
I #include <avr/pgmspace.h>

I Declare const strings using special flag PROGMEM

//PROGMEM used to locate a variable in flash ROM

const PROGMEM char myString[] = "Repeated Use";

I You can create special pointers using PGM_P and access the data using a

special macro pgm_read_byte

I Documentation is available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Memory Sections Tips

Using program space
I #include <avr/pgmspace.h>

I Declare const strings using special flag PROGMEM

//PROGMEM used to locate a variable in flash ROM

const PROGMEM char myString[] = "Repeated Use";

I You can create special pointers using PGM_P and access the data using a

special macro pgm_read_byte

I Documentation is available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Memory Sections Tips

Using program space
I #include <avr/pgmspace.h>

I Declare const strings using special flag PROGMEM

//PROGMEM used to locate a variable in flash ROM

const PROGMEM char myString[] = "Repeated Use";

I You can create special pointers using PGM_P and access the data using a

special macro pgm_read_byte

I Documentation is available from here

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Memory Sections Tips

Examples

PGM_P progPtr;

progPtr =myString;

//Somewhere in your code

while(pgm_read_byte(progPtr)!=’\0’){

printf("%c",pgm_read_byte(progPtr));

progPtr++;

}

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Memory Sections Tips

Examples

#include <avr/pgmspace.h>

void lcd_puts_P(const char c[]) { //same const char *c

uint8_t ch = pgm_read_byte(c);

while(ch != 0) {

lcd_putc(ch);

ch = pgm_read_byte(++c);

} }

// Usage: Note PSTR macro which simplifies placing string

// literals in flash ROM

// Code: lcd_puts_P(PSTR("Hello World"));

// Or: const PROGMEM char SOME_STRING[] = "Repeated Use";

// lcd_puts_P(SOME_STRING);
CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

	Memory Sections
	Tips

