
AVR C Programming
Discussion IV (Version 2.0)

UMBC - CE

September 15, 2015

Version 1.0 - Initial Document
Version 2.0 - Minor updates in references

Objectives Review Special Functions Code

Objectives
I Review AVR I/O in C

I Implement a demo AVR C program on the AVR Butterfly

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Objectives
I Review AVR I/O in C

I Implement a demo AVR C program on the AVR Butterfly

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

PORTx and DDRx Review
I Summary of control signals for port pins

DDxn PORTxn

PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Micro-controller Specific
Constants/Defines

I All programs will have a line of code to include various utility functions, as well

as various value definitions and processor specific definitions

include <avr/io.h >

or

include <avr/iom169p.h >

I The files are located at "C:\Program Files (x86)\Atmel\Atmel Toolchain\AVR8

GCC\Native\3.4.1056\avr8-gnu-toolchain\avr\include\avr"

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Micro-controller Specific
Constants/Defines

I All programs will have a line of code to include various utility functions, as well

as various value definitions and processor specific definitions

include <avr/io.h >

or

include <avr/iom169p.h >

I The files are located at "C:\Program Files (x86)\Atmel\Atmel Toolchain\AVR8

GCC\Native\3.4.1056\avr8-gnu-toolchain\avr\include\avr"

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Setting up the Direction bits
I To set the direction of all 8 pins of port D, assign a 8-bit value to DDRD

DDRD=0xFF; //set all port D pins as outputs

DDRD=0x00; //set all port D pins as inputs

DDRD=0b10101010; // alternating pin directions

I To just set pin 2 of port D to output, not touching the others

DDRD=DDRD | 0b00000100;

Or just

DDRD |= 0b00000100; //recommended!!!!

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Setting up the Direction bits
I To set the direction of all 8 pins of port D, assign a 8-bit value to DDRD

DDRD=0xFF; //set all port D pins as outputs

DDRD=0x00; //set all port D pins as inputs

DDRD=0b10101010; // alternating pin directions

I To just set pin 2 of port D to output, not touching the others

DDRD=DDRD | 0b00000100;

Or just

DDRD |= 0b00000100; //recommended!!!!

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Outputting values to PORTx
I Do not set all 8 bits in register PORTD without regard for the directions of

each individual pin, i.e. all the bits stored in DDRD

I Use bit operations when possible to suggest use of I/O bit assembly
commands and to avoid unintentionally setting extra bit values

Set one pin:
PORTD |=(1<<3);

same as
PORTD |=(1<<PD3);
Clear one pin:
PORTD &= ~((1<<3));

same as
PORTD &=~((1<<PD3));

I Don’t forget to set direction of pins first!
I Remember if pins are configured as inputs (DDRDn bit is 0) then the

corresponding bit in PORTD (PORTDn) sets the pull-up status

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Outputting values to PORTx
I Do not set all 8 bits in register PORTD without regard for the directions of

each individual pin, i.e. all the bits stored in DDRD
I Use bit operations when possible to suggest use of I/O bit assembly

commands and to avoid unintentionally setting extra bit values

Set one pin:
PORTD |=(1<<3);

same as
PORTD |=(1<<PD3);
Clear one pin:
PORTD &= ~((1<<3));

same as
PORTD &=~((1<<PD3));

I Don’t forget to set direction of pins first!
I Remember if pins are configured as inputs (DDRDn bit is 0) then the

corresponding bit in PORTD (PORTDn) sets the pull-up status

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Outputting values to PORTx
I Do not set all 8 bits in register PORTD without regard for the directions of

each individual pin, i.e. all the bits stored in DDRD
I Use bit operations when possible to suggest use of I/O bit assembly

commands and to avoid unintentionally setting extra bit values

Set one pin:
PORTD |=(1<<3);

same as
PORTD |=(1<<PD3);
Clear one pin:
PORTD &= ~((1<<3));

same as
PORTD &=~((1<<PD3));

I Don’t forget to set direction of pins first!
I Remember if pins are configured as inputs (DDRDn bit is 0) then the

corresponding bit in PORTD (PORTDn) sets the pull-up status

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Outputting values to PORTx
I Do not set all 8 bits in register PORTD without regard for the directions of

each individual pin, i.e. all the bits stored in DDRD
I Use bit operations when possible to suggest use of I/O bit assembly

commands and to avoid unintentionally setting extra bit values

Set one pin:
PORTD |=(1<<3);

same as
PORTD |=(1<<PD3);
Clear one pin:
PORTD &= ~((1<<3));

same as
PORTD &=~((1<<PD3));

I Don’t forget to set direction of pins first!

I Remember if pins are configured as inputs (DDRDn bit is 0) then the
corresponding bit in PORTD (PORTDn) sets the pull-up status

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Outputting values to PORTx
I Do not set all 8 bits in register PORTD without regard for the directions of

each individual pin, i.e. all the bits stored in DDRD
I Use bit operations when possible to suggest use of I/O bit assembly

commands and to avoid unintentionally setting extra bit values

Set one pin:
PORTD |=(1<<3);

same as
PORTD |=(1<<PD3);
Clear one pin:
PORTD &= ~((1<<3));

same as
PORTD &=~((1<<PD3));

I Don’t forget to set direction of pins first!
I Remember if pins are configured as inputs (DDRDn bit is 0) then the

corresponding bit in PORTD (PORTDn) sets the pull-up status
CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Setting multiple bits
I Letś say we need 0,2,4,6 pins to be as input and 1,3,5,7 as output

DDRD =(1<<1)|(1<<3)|(1<<5)|(1<<7); //set all port D pins as outputs
Same as
DDRD = (1<<7)|(0<<6)|(1<<5)|(0<<4)|(1<<3)|(0<<2)|(1<<1)|(0<<0);

// alternating pin directions

I PD7 is defined as 7 in the device include file. USING PD7 instead of 7 is
arguably more self-documenting:

DDRD = (1<<PD7)|(0<<PD6)|(1<<PD5)|(0<<PD4)|(1<<PD3)|
(0<<PD2)|(1<<PD1)|(0<<PD0);

So we can output values to 1,3,5 and 7 pins
PORTD |=(1<<1)|(1<<3)|(1<<5)|(1<<7);
Or clear them
PORTD &= ~((1<<1)|(1<<3)|(1<<5)|(1<<7));

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Setting multiple bits
I Letś say we need 0,2,4,6 pins to be as input and 1,3,5,7 as output

DDRD =(1<<1)|(1<<3)|(1<<5)|(1<<7); //set all port D pins as outputs
Same as
DDRD = (1<<7)|(0<<6)|(1<<5)|(0<<4)|(1<<3)|(0<<2)|(1<<1)|(0<<0);

// alternating pin directions

I PD7 is defined as 7 in the device include file. USING PD7 instead of 7 is
arguably more self-documenting:

DDRD = (1<<PD7)|(0<<PD6)|(1<<PD5)|(0<<PD4)|(1<<PD3)|
(0<<PD2)|(1<<PD1)|(0<<PD0);

So we can output values to 1,3,5 and 7 pins
PORTD |=(1<<1)|(1<<3)|(1<<5)|(1<<7);
Or clear them
PORTD &= ~((1<<1)|(1<<3)|(1<<5)|(1<<7));

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Checking multiple bits
flag = PIND & (0b00000001 | 0b01000000);

if (flag){

// do something when flag is non-zero

}

I The following modification changes nothing but expresses intent more

explicitly

if (flag!=0){

// do something when flag is non-zero

}

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Special Functions
I You may also use the _BV(x) macro defined in avr/sfr _defs.h which is

included through avr/io.h as # define _BV(x) (1<<x)

include "avr\io.h"
int main(void) {

DDRD &=~_BV(0); //set PORTD pin0 to zero as input
PORTD |=_BV(0);//Enable pull up;
DDRD |=_BV(1);//set PORTD pin1 to one as output
PORTD |=_BV(1);//led ON
while(1) {

if (bit_is_clear(PIND, 0)){
//if button is pressed
while(1) {

PORTD &=~_BV(1);//led OFF
//LED OFF while Button is pressed
loop_until_bit_is_set(PIND, 0);
PORTD|=_BV(1);//led ON

}}}}

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Using predefined bits
I

UCSR0B = _BV(TXEN0)|_BV(RXEN0); //enable RX and and TX

I Both RXEN0 and TXEN0 is predefined in iom169p.h

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Using predefined bits
I

UCSR0B = _BV(TXEN0)|_BV(RXEN0); //enable RX and and TX

I Both RXEN0 and TXEN0 is predefined in iom169p.h

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option

I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >

I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using
define or passed through the -D compiler option

I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option

I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz

I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)

I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)
I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support

I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)
I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)

I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)
I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)
I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_ms(double _ms)

I Requires # include <util/delay.h >
I F_CPU preprocessor symbol should be defined as MCPU frequency in Hz using

define or passed through the -D compiler option
I In code: # define F_CPU 8000000UL // 8 MHz
I Command line option: -D F_CPU=8000000UL

I Max delay is 4294967.295 ? 106 / F_CPU ms (ex: 536871 ms for a 8MHz clock)
I assumes the avr-gcc toolchain being used has __builtin_avr_delay_cycles

(unsigned long) support
I Otherwise max delay is less and reduced precision is used for long delays

(see documentation)
I Use multiple delay commands if needed

I Conversion of delay to clock cycles will be rounded up to the next integer to
ensure at least the specified delay

I Alternatively, user can define __DELAY_ROUND_DOWN__and

__DELAY_ROUND_CLOSEST__to round down and round to closest integer
CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_us(double _us)

I Same as before but max delay is 1000 times less: 4294967.295 ? 106 / F_CPU

us (ex: 536871 us for a 8MHz clock)

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

Software Delay Functions
I _delay_us(double _us)

I Same as before but max delay is 1000 times less: 4294967.295 ? 106 / F_CPU

us (ex: 536871 us for a 8MHz clock)

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

Objectives Review Special Functions Code

AVR C Code
Download code from instructor website (c_example.c)

CMPE-311 C Programming & Embedded Systems UMBC-CE 2015

	Objectives
	Review
	Constants
	Setting Direction
	Outputting Values
	Multiple Bits
	Checking Bits

	Special Functions
	Code

